fixed exercise 01 of point processes

This commit is contained in:
Jan Benda 2017-11-27 22:25:07 +01:00
parent 4e17882dd5
commit 53c2f92629
12 changed files with 276 additions and 163 deletions

View File

@ -26,7 +26,7 @@ function isicorr = isiserialcorr(isivec, maxlag)
% plot:
plot(lags, isicorr, '-b');
hold on;
scatter(lags, isicorr, 100.0, 'b', 'filled');
scatter(lags, isicorr, 10.0, 'b', 'filled');
hold off;
xlabel('Lag k')
ylabel('\rho_k')

View File

@ -1,7 +1,7 @@
function plotISIHist(isis, binwidth)
function plotisihist(isis, binwidth)
% Plot and annotate histogram of interspike intervals.
%
% plotISIHist(isis, binwidth)
% plotisihist(isis, binwidth)
%
% Arguments:
% isis: vector of interspike intervals in seconds
@ -9,9 +9,9 @@ function plotISIHist(isis, binwidth)
% compute normalized histogram:
if nargin < 2
[pdf, centers] = isiHist(isis);
[pdf, centers] = isihist(isis);
else
[pdf, centers] = isiHist(isis, binwidth);
[pdf, centers] = isihist(isis, binwidth);
end
% plot:
@ -21,14 +21,11 @@ function plotISIHist(isis, binwidth)
% annotation:
misi = mean(isis);
sdisi = std(isis);
disi = sdisi^2.0/2.0/misi^3;
text(0.95, 0.8, sprintf('mean=%.1f ms', 1000.0*misi), ...
'Units', 'normalized', 'HorizontalAlignment', 'right')
text(0.95, 0.7, sprintf('std=%.1f ms', 1000.0*sdisi), ...
'Units', 'normalized', 'HorizontalAlignment', 'right')
text(0.95, 0.6, sprintf('CV=%.2f', sdisi/misi), ...
'Units', 'normalized', 'HorizontalAlignment', 'right')
%text(0.95, 0.5, sprintf('D=%.1f Hz', disi), ...
% 'Units', 'normalized', 'HorizontalAlignment', 'right')
end

View File

@ -1,19 +1,19 @@
maxisi = 300.0;
subplot(1, 3, 1);
poissonisis = isis(poissonspikes);
isihist(poissonisis, 0.001);
plotisihist(poissonisis, 0.001);
xlim([0, maxisi])
title('Poisson');
subplot(1, 3, 2);
pifouisis = isis(pifouspikes);
isihist(pifouisis, 0.001);
plotisihist(pifouisis, 0.001);
xlim([0, maxisi])
title('PIF OU');
subplot(1, 3, 3);
lifadaptisis = isis(lifadaptspikes);
isihist(lifadaptisis, 0.001);
plotisihist(lifadaptisis, 0.001);
xlim([0, maxisi])
title('LIF adapt');
savefigpdf(gcf, 'isihist.pdf', 20, 7);
savefigpdf(gcf, 'isihist.pdf', 20, 7);

View File

@ -1,11 +1,6 @@
\vspace*{-6.5ex}
\vspace*{-7.8ex}
\begin{center}
\textbf{\Large Einf\"uhrung in die wissenschaftliche Datenverarbeitung}\\[1ex]
\textbf{\Large Introduction to Scientific Computing}\\[2.3ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Abteilung Neuroethologie \hfill --- \hfill Institut f\"ur Neurobiologie \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
Neuroethology Lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\ifprintanswers%
\else
\fi

View File

@ -0,0 +1,198 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{pslatex}
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{L\"osungen}
\else
\newcommand{\stitle}{\"Ubung}
\fi
\header{{\bfseries\large \stitle}}{{\bfseries\large Punktprozesse}}{{\bfseries\large 27. Oktober, 2015}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{dsfont}
\newcommand{\naZ}{\mathds{N}}
\newcommand{\gaZ}{\mathds{Z}}
\newcommand{\raZ}{\mathds{Q}}
\newcommand{\reZ}{\mathds{R}}
\newcommand{\reZp}{\mathds{R^+}}
\newcommand{\reZpN}{\mathds{R^+_0}}
\newcommand{\koZ}{\mathds{C}}
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\continue}{\ifprintanswers%
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\continuepage}{\ifprintanswers%
\newpage
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\newsolutionpage}{\ifprintanswers%
\newpage%
\else
\fi}
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qt}[1]{\textbf{#1}\\}
\newcommand{\pref}[1]{(\ref{#1})}
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{instructions}
\begin{questions}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\question \qt{Statistik von Spiketrains}
In Ilias findet ihr die Dateien \code{poisson.mat},
\code{pifou.mat}, und \code{lifadapt.mat}. Jede dieser Dateien
enth\"alt mehrere Trials von Spiketrains von einer bestimmten Art
von Neuron. Die Spikezeiten sind in Sekunden gemessen.
Mit den folgenden Aufgaben wollen wir die Statistik der Spiketrains
der drei Neurone miteinander vergleichen.
\begin{parts}
\part Lade die Spiketrains aus den drei Dateien. Achte darauf,
dass sie verschiedene Variablen\-namen bekommen.
\begin{solution}
\begin{lstlisting}
clear all
% not so good:
load poisson.mat
whos
poissonspikes = spikes;
load pifou.mat;
pifouspikes = spikes;
load lifadapt.mat;
lifadaptspikes = spikes;
clear spikes;
% better:
clear all
x = load( 'poisson.mat' );
poissonspikes = x.spikes;
x = load( pifou.mat' );
pifouspikes = x.spikes;
x = load( 'lifadapt.mat' );
lifadaptspikes = x.spikes;
\end{lstlisting}
\end{solution}
\part Schreibe eine Funktion, die die Spikezeiten der ersten
$t_{max}$ Sekunden in einem Rasterplot visualisiert. In jeder
Zeile des Rasterplots wird ein Spiketrain dargestellt. Jeder
einzelne Spike wird als senkrechte Linie zu der Zeit des
Auftretens des Spikes geplottet. Benutze die Funktion, um die
Spikeraster der ersten 1\,s der drei Neurone nebeneinander zu plotten.
\begin{solution}
\lstinputlisting{../code/spikeraster.m}
\lstinputlisting{../code/plotspikeraster.m}
\mbox{}\\[-3ex]
\colorbox{white}{\includegraphics[width=1\textwidth]{spikeraster}}
\end{solution}
\part Schreibe eine Funktion, die einen einzigen Vektor mit den
Interspikeintervallen aller Trials von Spikezeiten zur\"uckgibt.
\begin{solution}
\lstinputlisting{../code/isis.m}
\end{solution}
\part Schreibe eine Funktion, die ein normiertes Histogramm aus
einem Vektor von Interspikeintervallen, gegeben in Sekunden,
berechnet und dieses mit richtiger Achsenbeschriftung plottet.
Die Interspikeintervalle sollen dabei in Millisekunden angegeben
werden. Die Funktion soll zus\"atzlich den Mittelwert, die
Standardabweichung, und den Variationskoeffizienten der
Interspikeintervalle berechnen und diese im Plot mit angeben.
Benutze die vorherige und diese Funktion, um die
Interspikeintervall Verteilung der drei Neurone zu vergleichen.
\begin{solution}
\lstinputlisting{../code/isihist.m}
\lstinputlisting{../code/plotisih.m}
\mbox{}\\[-3ex]
\colorbox{white}{\includegraphics[width=1\textwidth]{isihist}}
\end{solution}
\part Schreibe eine Funktion, die die seriellen Korrelationen der
Interspikeintervalle f\"ur Lags bis zu \code{maxlag} berechnet und
plottet. Die Seriellen Korrelationen $\rho_k$ f\"ur Lag $k$ der
Interspikeintervalle $T_i$ sind die Korrelationskoeffizienten
zwischen den Interspikeintervallen $T_i$ und den um das Lag $k$
verschobenen Intervallen $T_{i+k}$:
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i -
\langle T \rangle) \rangle}{\langle (T_i - \langle T
\rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm
var}(T_i)} = {\rm corr}(T_{i+k}, T_i) \]
Benutze diese Funktion, um die Interspikeintervall-Korrelationen
der drei Neurone zu vergleichen.
\begin{solution}
\lstinputlisting{../code/isiserialcorr.m}
\lstinputlisting{../code/plotserialcorr.m}
\colorbox{white}{\includegraphics[width=1\textwidth]{serialcorr}}
\end{solution}
\part Schreibe eine Funktion, die aus Spikezeiten
Histogramme aus der Anzahl von Spikes, die in Fenstern gegebener L\"ange $W$
gez\"ahlt werden, erzeugt und plottet.
Wende diese Funktion auf die drei
Datens\"atze an. Probiere verschiedene Fenstergr\"o{\ss}en $W$ aus.
\begin{solution}
\lstinputlisting{../code/counthist.m}
\lstinputlisting{../code/plotcounthist.m}
\colorbox{white}{\includegraphics[width=1\textwidth]{counthist}}
\end{solution}
\end{parts}
\end{questions}
\end{document}

View File

@ -11,11 +11,11 @@
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{L\"osungen}
\newcommand{\stitle}{: Solutions}
\else
\newcommand{\stitle}{\"Ubung}
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large \stitle}}{{\bfseries\large Punktprozesse}}{{\bfseries\large 27. Oktober, 2015}}
\header{{\bfseries\large Exercise 8\stitle}}{{\bfseries\large Point processes}}{{\bfseries\large November 27th, 2017}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
@ -89,17 +89,20 @@ jan.benda@uni-tuebingen.de}
\begin{questions}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\question \qt{Statistik von Spiketrains}
In Ilias findet ihr die Dateien \code{poisson.mat},
\code{pifou.mat}, und \code{lifadapt.mat}. Jede dieser Dateien
enth\"alt mehrere Trials von Spiketrains von einer bestimmten Art
von Neuron. Die Spikezeiten sind in Sekunden gemessen.
Mit den folgenden Aufgaben wollen wir die Statistik der Spiketrains
der drei Neurone miteinander vergleichen.
\question \qt{Statistics of interspike intervals}
Download the files \code{poisson.mat},
\code{pifou.mat}, and \code{lifadapt.mat} from Ilias.
Each of these files contains several trials of spike trains
of a specific type of neuron. The spike times are measured in seconds.
We want to compare the statistics of the interspike intervals of the
three neurons.
\begin{parts}
\part Lade die Spiketrains aus den drei Dateien. Achte darauf,
dass sie verschiedene Variablen\-namen bekommen.
\part Load the spike trains from the three files.
Make sure that the data are assigned to different variables.
What is the type of the data? How can you access individual spike trains?
How do you access single spike times?
\begin{solution}
\begin{lstlisting}
clear all
@ -114,21 +117,24 @@ jan.benda@uni-tuebingen.de}
clear spikes;
% better:
clear all
x = load( 'poisson.mat' );
x = load('poisson.mat');
poissonspikes = x.spikes;
x = load( pifou.mat' );
x = load('pifou.mat');
pifouspikes = x.spikes;
x = load( 'lifadapt.mat' );
x = load('lifadapt.mat');
lifadaptspikes = x.spikes;
\end{lstlisting}
\end{solution}
\part Schreibe eine Funktion, die die Spikezeiten der ersten
$t_{max}$ Sekunden in einem Rasterplot visualisiert. In jeder
Zeile des Rasterplots wird ein Spiketrain dargestellt. Jeder
einzelne Spike wird als senkrechte Linie zu der Zeit des
Auftretens des Spikes geplottet. Benutze die Funktion, um die
Spikeraster der ersten 1\,s der drei Neurone nebeneinander zu plotten.
\newsolutionpage
\part Write a function that illustrated the spike times of the
first $t_{max}$ seconds in a raster plot. Each spike train is one
row in the raster plot. Each spike is a vertical line at the time
of the spike. When appropriate, the function should use milliseconds
for the time axis instead of seconds.
Use this function to plot the first second of the
spike rasters of the three neurons.
\begin{solution}
\lstinputlisting{../code/spikeraster.m}
\lstinputlisting{../code/plotspikeraster.m}
@ -136,61 +142,55 @@ jan.benda@uni-tuebingen.de}
\colorbox{white}{\includegraphics[width=1\textwidth]{spikeraster}}
\end{solution}
\part Schreibe eine Funktion, die einen einzigen Vektor mit den
Interspikeintervallen aller Trials von Spikezeiten zur\"uckgibt.
\part Write a function that returns a single vector containing the
interspike intervals of all trials of spike times.
\begin{solution}
\lstinputlisting{../code/isis.m}
\end{solution}
\part Schreibe eine Funktion, die ein normiertes Histogramm aus
einem Vektor von Interspikeintervallen, gegeben in Sekunden,
berechnet und dieses mit richtiger Achsenbeschriftung plottet.
Die Interspikeintervalle sollen dabei in Millisekunden angegeben
werden. Die Funktion soll zus\"atzlich den Mittelwert, die
Standardabweichung, und den Variationskoeffizienten der
Interspikeintervalle berechnen und diese im Plot mit angeben.
Benutze die vorherige und diese Funktion, um die
Interspikeintervall Verteilung der drei Neurone zu vergleichen.
\part Write a function that computes an estimate of the
probability density of interspike intervals from a vector of
interspike intervals. The function should automatically choose a
good bin width for the histogram.
Write another function that plots the probability density of
interspike intervals given a vector of interspike intervals as
argument. The function should use the first function for computing
the probability density. The interspike intervals are given in
seconds, but the plot should mark the interspike intervals in
milliseconds. In addition, the function should compute the mean,
the standard deviation and the coefficient of variation and
display them in the plot as well.
Use this and the previous functions to compare the
interspike interval statistics of the three neurons.
\begin{solution}
\lstinputlisting{../code/isihist.m}
\lstinputlisting{../code/plotisih.m}
\lstinputlisting{../code/plotisihist.m}
\lstinputlisting{../code/plotisihs.m}
\mbox{}\\[-3ex]
\colorbox{white}{\includegraphics[width=1\textwidth]{isihist}}
\end{solution}
\part Schreibe eine Funktion, die die seriellen Korrelationen der
Interspikeintervalle f\"ur Lags bis zu \code{maxlag} berechnet und
plottet. Die Seriellen Korrelationen $\rho_k$ f\"ur Lag $k$ der
Interspikeintervalle $T_i$ sind die Korrelationskoeffizienten
zwischen den Interspikeintervallen $T_i$ und den um das Lag $k$
verschobenen Intervallen $T_{i+k}$:
\part Write a function that computes and plots the serial
correlations of interspike intervals for lags upto
\code{maxlag}. The serial correlations $\rho_k$ for lag $k$ of the
interspike intervals $T_i$ are the correlation coefficients
between interspike intervals $T_i$ and the intervals $T_{i+k}$
that are shifted by lag $k$:
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i -
\langle T \rangle) \rangle}{\langle (T_i - \langle T
\rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm
var}(T_i)} = {\rm corr}(T_{i+k}, T_i) \]
Benutze diese Funktion, um die Interspikeintervall-Korrelationen
der drei Neurone zu vergleichen.
Use this function to compare the serial correlations of the
interspike intervals of the three neurons.
\begin{solution}
\lstinputlisting{../code/isiserialcorr.m}
\lstinputlisting{../code/plotserialcorr.m}
\colorbox{white}{\includegraphics[width=1\textwidth]{serialcorr}}
\end{solution}
\part Schreibe eine Funktion, die aus Spikezeiten
Histogramme aus der Anzahl von Spikes, die in Fenstern gegebener L\"ange $W$
gez\"ahlt werden, erzeugt und plottet.
Wende diese Funktion auf die drei
Datens\"atze an. Probiere verschiedene Fenstergr\"o{\ss}en $W$ aus.
\begin{solution}
\lstinputlisting{../code/counthist.m}
\lstinputlisting{../code/plotcounthist.m}
\colorbox{white}{\includegraphics[width=1\textwidth]{counthist}}
\end{solution}
\end{parts}
\end{questions}

View File

@ -1,7 +1,7 @@
%!PS-Adobe-2.0 EPSF-2.0
%%Title: pointprocessscetchA.tex
%%Creator: gnuplot 4.6 patchlevel 4
%%CreationDate: Sat Nov 25 18:46:51 2017
%%CreationDate: Mon Nov 27 21:08:10 2017
%%DocumentFonts:
%%BoundingBox: 50 50 373 135
%%EndComments
@ -433,7 +433,7 @@ SDict begin [
/Author (jan)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Sat Nov 25 18:46:51 2017)
/CreationDate (Mon Nov 27 21:08:10 2017)
/DOCINFO pdfmark
end
} ifelse

View File

@ -1,7 +1,7 @@
%!PS-Adobe-2.0 EPSF-2.0
%%Title: pointprocessscetchB.tex
%%Creator: gnuplot 4.6 patchlevel 4
%%CreationDate: Sat Nov 25 18:46:51 2017
%%CreationDate: Mon Nov 27 21:08:10 2017
%%DocumentFonts:
%%BoundingBox: 50 50 373 237
%%EndComments
@ -433,7 +433,7 @@ SDict begin [
/Author (jan)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Sat Nov 25 18:46:51 2017)
/CreationDate (Mon Nov 27 21:08:10 2017)
/DOCINFO pdfmark
end
} ifelse

View File

@ -11,11 +11,11 @@
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: L\"osungen}
\newcommand{\stitle}{: Solutions}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large Exercise 7\stitle}}{{\bfseries\large Statistics}}{{\bfseries\large 21. November, 2017}}
\header{{\bfseries\large Exercise 7\stitle}}{{\bfseries\large Statistics}}{{\bfseries\large November 21st, 2017}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
@ -78,8 +78,6 @@ jan.benda@uni-tuebingen.de}
\newcommand{\extra}{--- bonus question ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
\graphicspath{{../../pointprocesses/exercises/}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
@ -182,81 +180,6 @@ With the following questions we want to illustrate the central limit theorem.
\includegraphics[width=0.5\textwidth]{centrallimit-samples}
\end{solution}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\question \qt{Statistics of interspike intervals}
Download the files \code{poisson.mat},
\code{pifou.mat}, and \code{lifadapt.mat} from Ilias.
Each of these files contains several trials of spike trains
of a specific type of neuron. The spike times are measured in seconds.
We want to compare the statistics of the interspike intervals of the
three neurons.
\begin{parts}
\part Load the spike trains from the three files.
Make sure that data are assigned to different variables.
What is the type of the data? How can you access individual spike trains?
How do you access single spike times?
\begin{solution}
\begin{lstlisting}
clear all
% not so good:
load poisson.mat
whos
poissonspikes = spikes;
load pifou.mat;
pifouspikes = spikes;
load lifadapt.mat;
lifadaptspikes = spikes;
clear spikes;
% better:
clear all
x = load('poisson.mat');
poissonspikes = x.spikes;
x = load('pifou.mat');
pifouspikes = x.spikes;
x = load('lifadapt.mat');
lifadaptspikes = x.spikes;
\end{lstlisting}
\end{solution}
\part Write a function that illustrated the spike times of the
first $t_{max}$ seconds in a raster plot. Each spike train is one
row in the raster plot. Each spike is a vertical line at the time
of the spike. Use this function to plot the first second of the
spike rasters of the three neurons.
\begin{solution}
\lstinputlisting{../../pointprocesses/code/spikeraster.m}
\lstinputlisting{../../pointprocesses/code/plotspikeraster.m}
\mbox{}\\[-3ex]
\colorbox{white}{\includegraphics[width=1\textwidth]{spikeraster}}
\end{solution}
\part Write a function that returns a single vector containing the
interspike intervals of aall trials of spike times.
\begin{solution}
\lstinputlisting{../../pointprocesses/code/isis.m}
\end{solution}
\part Write a function that computes and plots an estimate of the
probability density of interspike intervals from a vector of
interspike intervals. The interspike intervals are given in
seconds, but the plot should mark the interspike intervals in
milliseconds. In addition, the function should compute the mean,
the standard deviation and the coefficient of variation
and display them in the plot as well.
Use this and the previous functions to compare the
interspike interval statistics of the three neurons.
\begin{solution}
\lstinputlisting{../../pointprocesses/code/isihist.m}
\lstinputlisting{../../pointprocesses/code/plotisih.m}
\mbox{}\\[-3ex]
\colorbox{white}{\includegraphics[width=1\textwidth]{isihist}}
\end{solution}
\end{parts}
\end{questions}
\end{document}

View File

@ -1,6 +1,6 @@
\vspace*{-6.5ex}
\vspace*{-7.8ex}
\begin{center}
\textbf{\Large Introduction to scientific computing}\\[1ex]
\textbf{\Large Introduction to Scientific Computing}\\[2.3ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
Neuroethology Lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}