added solution for fano time project
This commit is contained in:
parent
bd055b12e5
commit
52b7d39712
Binary file not shown.
11
projects/project_fano_time/solution/counthist.m
Normal file
11
projects/project_fano_time/solution/counthist.m
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
function [counts, cbins] = counthist(spikes, tmin, tmax, T, cmax)
|
||||||
|
tbins = tmin+T/2:T:tmax;
|
||||||
|
cbins = 0.5:cmax;
|
||||||
|
counts = zeros(1, length(cbins));
|
||||||
|
for k = 1:length(spikes)
|
||||||
|
times = spikes{k};
|
||||||
|
n = hist(times((times>=tmin)&(times<=tmax)), tbins);
|
||||||
|
counts = counts + hist(n, cbins);
|
||||||
|
end
|
||||||
|
counts = counts / sum(counts);
|
||||||
|
end
|
23
projects/project_fano_time/solution/discriminability.m
Normal file
23
projects/project_fano_time/solution/discriminability.m
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
function [d, thresholds, true1s, false1s, true2s, false2s, pratio] = discriminability(spikes1, spikes2, tmax, T, cmax)
|
||||||
|
[c1, b1] = counthist(spikes1, 0.0, tmax, T, cmax);
|
||||||
|
[c2, b2] = counthist(spikes2, 0.0, tmax, T, cmax);
|
||||||
|
thresholds = 0:cmax;
|
||||||
|
true1s = zeros(length(thresholds), 1);
|
||||||
|
true2s = zeros(length(thresholds), 1);
|
||||||
|
false1s = zeros(length(thresholds), 1);
|
||||||
|
false2s = zeros(length(thresholds), 1);
|
||||||
|
for k = 1:length(thresholds)
|
||||||
|
th = thresholds(k);
|
||||||
|
t1 = sum(c1(b1<=th));
|
||||||
|
f1 = sum(c1(b1>th));
|
||||||
|
t2 = sum(c2(b2>=th));
|
||||||
|
f2 = sum(c2(b2<th));
|
||||||
|
true1s(k) = t1;
|
||||||
|
true2s(k) = t2;
|
||||||
|
false1s(k) = f1;
|
||||||
|
false2s(k) = f2;
|
||||||
|
end
|
||||||
|
%pratio = (true1s + true2s)./(false1s+false2s);
|
||||||
|
pratio = (true1s + true2s)/2;
|
||||||
|
d = max(pratio);
|
||||||
|
end
|
71
projects/project_fano_time/solution/fanotime.m
Normal file
71
projects/project_fano_time/solution/fanotime.m
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
%% general settings for the model neuron:
|
||||||
|
trials = 10;
|
||||||
|
tmax = 50.0;
|
||||||
|
D = 0.01;
|
||||||
|
|
||||||
|
%% generate and plot spiketrains for two inputs:
|
||||||
|
I1 = 14.0;
|
||||||
|
I2 = 15.0;
|
||||||
|
spikes1 = lifspikes(trials, I1, tmax, D);
|
||||||
|
spikes2 = lifspikes(trials, I2, tmax, D);
|
||||||
|
subplot(1, 2, 1);
|
||||||
|
tmin = 10.0;
|
||||||
|
spikeraster(spikes1, tmin, tmin+2.0);
|
||||||
|
title(sprintf('I_1=%g', I1))
|
||||||
|
subplot(1, 2, 2);
|
||||||
|
spikeraster(spikes2, tmin, tmin+2.0);
|
||||||
|
title(sprintf('I_2=%g', I2))
|
||||||
|
%savefigpdf(gcf(), 'spikeraster.pdf')
|
||||||
|
|
||||||
|
%% spike count histograms:
|
||||||
|
Ts = [0.01 0.1 0.5 1.0];
|
||||||
|
cmax = 100;
|
||||||
|
figure()
|
||||||
|
for k = 1:length(Ts)
|
||||||
|
T = Ts(k);
|
||||||
|
[c1, b1] = counthist(spikes1, 0.0, tmax, T, cmax);
|
||||||
|
[c2, b2] = counthist(spikes2, 0.0, tmax, T, cmax);
|
||||||
|
subplot(2, 2, k)
|
||||||
|
bar(b1, c1, 'r');
|
||||||
|
hold on;
|
||||||
|
bar(b2, c2, 'b');
|
||||||
|
xlim([0 cmax])
|
||||||
|
title(sprintf('T=%gms', 1000.0*T))
|
||||||
|
hold off;
|
||||||
|
end
|
||||||
|
|
||||||
|
%% discrimination measure:
|
||||||
|
T = 0.1;
|
||||||
|
cmax = 20;
|
||||||
|
[d, thresholds, true1s, false1s, true2s, false2s, pratio] = discriminability(spikes1, spikes2, tmax, T, cmax);
|
||||||
|
figure()
|
||||||
|
subplot(1, 3, 1);
|
||||||
|
plot(thresholds, true1s, 'b');
|
||||||
|
hold on;
|
||||||
|
plot(thresholds, true2s, 'b');
|
||||||
|
plot(thresholds, false1s, 'r');
|
||||||
|
plot(thresholds, false2s, 'r');
|
||||||
|
hold off;
|
||||||
|
% Ratio:
|
||||||
|
subplot(1, 3, 2);
|
||||||
|
fprintf('discriminability = %g\n', d);
|
||||||
|
plot(thresholds, pratio);
|
||||||
|
% ROC:
|
||||||
|
subplot(1, 3, 3);
|
||||||
|
plot(false2s, true1s);
|
||||||
|
|
||||||
|
%% discriminability:
|
||||||
|
Ts = 0.01:0.01:1.0;
|
||||||
|
cmax = 100;
|
||||||
|
ds = zeros(length(Ts), 1)
|
||||||
|
for k = 1:length(Ts)
|
||||||
|
T = Ts(k);
|
||||||
|
[c1, b1] = counthist(spikes1, 0.0, tmax, T, cmax);
|
||||||
|
[c2, b2] = counthist(spikes2, 0.0, tmax, T, cmax);
|
||||||
|
[d, thresholds, true1s, false1s, true2s, false2s, pratio] = discriminability(spikes1, spikes2, tmax, T, cmax);
|
||||||
|
ds(k) = d;
|
||||||
|
end
|
||||||
|
figure()
|
||||||
|
plot(Ts, ds)
|
||||||
|
|
||||||
|
|
39
projects/project_fano_time/solution/lifspikes.m
Normal file
39
projects/project_fano_time/solution/lifspikes.m
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
function spikes = lifspikes(trials, input, tmaxdt, D)
|
||||||
|
% Generate spike times of a leaky integrate-and-fire neuron.
|
||||||
|
% trials: the number of trials to be generated
|
||||||
|
% input: the stimulus either as a single value or as a vector
|
||||||
|
% tmaxdt: in case of a single value stimulus the duration of a trial
|
||||||
|
% in case of a vector as a stimulus the time step
|
||||||
|
% D: the strength of additive white noise
|
||||||
|
|
||||||
|
tau = 0.01;
|
||||||
|
if nargin < 4
|
||||||
|
D = 1e0;
|
||||||
|
end
|
||||||
|
vreset = 0.0;
|
||||||
|
vthresh = 10.0;
|
||||||
|
dt = 5e-5;
|
||||||
|
|
||||||
|
if max(size(input)) == 1
|
||||||
|
input = input * ones(ceil(tmaxdt/dt), 1);
|
||||||
|
else
|
||||||
|
dt = tmaxdt;
|
||||||
|
end
|
||||||
|
spikes = cell(trials, 1);
|
||||||
|
for k=1:trials
|
||||||
|
times = [];
|
||||||
|
j = 1;
|
||||||
|
v = vreset + (vthresh-vreset)*rand(1);
|
||||||
|
noise = sqrt(2.0*D)*randn(length(input), 1)/sqrt(dt);
|
||||||
|
for i=1:length(noise)
|
||||||
|
v = v + (- v + noise(i) + input(i))*dt/tau;
|
||||||
|
if v >= vthresh
|
||||||
|
v = vreset;
|
||||||
|
spiketime = i*dt;
|
||||||
|
times(j) = spiketime;
|
||||||
|
j = j + 1;
|
||||||
|
end
|
||||||
|
end
|
||||||
|
spikes{k} = times;
|
||||||
|
end
|
||||||
|
end
|
28
projects/project_fano_time/solution/savefigpdf.m
Normal file
28
projects/project_fano_time/solution/savefigpdf.m
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
function savefigpdf(fig, name, width, height)
|
||||||
|
% Saves figure fig in pdf file name.pdf with appropriately set page size
|
||||||
|
% and fonts
|
||||||
|
|
||||||
|
% default width:
|
||||||
|
if nargin < 3
|
||||||
|
width = 11.7;
|
||||||
|
end
|
||||||
|
% default height:
|
||||||
|
if nargin < 4
|
||||||
|
height = 9.0;
|
||||||
|
end
|
||||||
|
|
||||||
|
% paper:
|
||||||
|
set(fig, 'PaperUnits', 'centimeters');
|
||||||
|
set(fig, 'PaperSize', [width height]);
|
||||||
|
set(fig, 'PaperPosition', [0.0 0.0 width height]);
|
||||||
|
set(fig, 'Color', 'white')
|
||||||
|
|
||||||
|
% font:
|
||||||
|
set(findall(fig, 'type', 'axes'), 'FontSize', 12)
|
||||||
|
set(findall(fig, 'type', 'text'), 'FontSize', 12)
|
||||||
|
|
||||||
|
% save:
|
||||||
|
saveas(fig, name, 'pdf')
|
||||||
|
|
||||||
|
end
|
||||||
|
|
30
projects/project_fano_time/solution/spikeraster.m
Normal file
30
projects/project_fano_time/solution/spikeraster.m
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
function spikeraster(spikes, tmin, tmax)
|
||||||
|
% Display a spike raster of the spike times given in spikes.
|
||||||
|
%
|
||||||
|
% spikeraster(spikes, tmax)
|
||||||
|
% spikes: a cell array of vectors of spike times in seconds
|
||||||
|
% tmin: plot spike raster starting at tmin seconds
|
||||||
|
% tmax: plot spike raster upto tmax seconds
|
||||||
|
|
||||||
|
ntrials = length(spikes);
|
||||||
|
for k = 1:ntrials
|
||||||
|
times = spikes{k};
|
||||||
|
times = times((times>=tmin) & (times<=tmax));
|
||||||
|
if tmax < 1.5
|
||||||
|
times = 1000.0*times; % conversion to ms
|
||||||
|
end
|
||||||
|
for i = 1:length( times )
|
||||||
|
line([times(i) times(i)],[k-0.4 k+0.4], 'Color', 'k');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if (tmax-tmin) < 1.5
|
||||||
|
xlabel('Time [ms]');
|
||||||
|
xlim([1000.0*tmin 1000.0*tmax]);
|
||||||
|
else
|
||||||
|
xlabel('Time [s]');
|
||||||
|
xlim([tmin tmax]);
|
||||||
|
end
|
||||||
|
ylabel('Trials');
|
||||||
|
ylim([0.3 ntrials+0.7 ]);
|
||||||
|
end
|
||||||
|
|
Reference in New Issue
Block a user