added solution for fano time project
This commit is contained in:
parent
bd055b12e5
commit
52b7d39712
Binary file not shown.
11
projects/project_fano_time/solution/counthist.m
Normal file
11
projects/project_fano_time/solution/counthist.m
Normal file
@ -0,0 +1,11 @@
|
||||
function [counts, cbins] = counthist(spikes, tmin, tmax, T, cmax)
|
||||
tbins = tmin+T/2:T:tmax;
|
||||
cbins = 0.5:cmax;
|
||||
counts = zeros(1, length(cbins));
|
||||
for k = 1:length(spikes)
|
||||
times = spikes{k};
|
||||
n = hist(times((times>=tmin)&(times<=tmax)), tbins);
|
||||
counts = counts + hist(n, cbins);
|
||||
end
|
||||
counts = counts / sum(counts);
|
||||
end
|
23
projects/project_fano_time/solution/discriminability.m
Normal file
23
projects/project_fano_time/solution/discriminability.m
Normal file
@ -0,0 +1,23 @@
|
||||
function [d, thresholds, true1s, false1s, true2s, false2s, pratio] = discriminability(spikes1, spikes2, tmax, T, cmax)
|
||||
[c1, b1] = counthist(spikes1, 0.0, tmax, T, cmax);
|
||||
[c2, b2] = counthist(spikes2, 0.0, tmax, T, cmax);
|
||||
thresholds = 0:cmax;
|
||||
true1s = zeros(length(thresholds), 1);
|
||||
true2s = zeros(length(thresholds), 1);
|
||||
false1s = zeros(length(thresholds), 1);
|
||||
false2s = zeros(length(thresholds), 1);
|
||||
for k = 1:length(thresholds)
|
||||
th = thresholds(k);
|
||||
t1 = sum(c1(b1<=th));
|
||||
f1 = sum(c1(b1>th));
|
||||
t2 = sum(c2(b2>=th));
|
||||
f2 = sum(c2(b2<th));
|
||||
true1s(k) = t1;
|
||||
true2s(k) = t2;
|
||||
false1s(k) = f1;
|
||||
false2s(k) = f2;
|
||||
end
|
||||
%pratio = (true1s + true2s)./(false1s+false2s);
|
||||
pratio = (true1s + true2s)/2;
|
||||
d = max(pratio);
|
||||
end
|
71
projects/project_fano_time/solution/fanotime.m
Normal file
71
projects/project_fano_time/solution/fanotime.m
Normal file
@ -0,0 +1,71 @@
|
||||
%% general settings for the model neuron:
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
D = 0.01;
|
||||
|
||||
%% generate and plot spiketrains for two inputs:
|
||||
I1 = 14.0;
|
||||
I2 = 15.0;
|
||||
spikes1 = lifspikes(trials, I1, tmax, D);
|
||||
spikes2 = lifspikes(trials, I2, tmax, D);
|
||||
subplot(1, 2, 1);
|
||||
tmin = 10.0;
|
||||
spikeraster(spikes1, tmin, tmin+2.0);
|
||||
title(sprintf('I_1=%g', I1))
|
||||
subplot(1, 2, 2);
|
||||
spikeraster(spikes2, tmin, tmin+2.0);
|
||||
title(sprintf('I_2=%g', I2))
|
||||
%savefigpdf(gcf(), 'spikeraster.pdf')
|
||||
|
||||
%% spike count histograms:
|
||||
Ts = [0.01 0.1 0.5 1.0];
|
||||
cmax = 100;
|
||||
figure()
|
||||
for k = 1:length(Ts)
|
||||
T = Ts(k);
|
||||
[c1, b1] = counthist(spikes1, 0.0, tmax, T, cmax);
|
||||
[c2, b2] = counthist(spikes2, 0.0, tmax, T, cmax);
|
||||
subplot(2, 2, k)
|
||||
bar(b1, c1, 'r');
|
||||
hold on;
|
||||
bar(b2, c2, 'b');
|
||||
xlim([0 cmax])
|
||||
title(sprintf('T=%gms', 1000.0*T))
|
||||
hold off;
|
||||
end
|
||||
|
||||
%% discrimination measure:
|
||||
T = 0.1;
|
||||
cmax = 20;
|
||||
[d, thresholds, true1s, false1s, true2s, false2s, pratio] = discriminability(spikes1, spikes2, tmax, T, cmax);
|
||||
figure()
|
||||
subplot(1, 3, 1);
|
||||
plot(thresholds, true1s, 'b');
|
||||
hold on;
|
||||
plot(thresholds, true2s, 'b');
|
||||
plot(thresholds, false1s, 'r');
|
||||
plot(thresholds, false2s, 'r');
|
||||
hold off;
|
||||
% Ratio:
|
||||
subplot(1, 3, 2);
|
||||
fprintf('discriminability = %g\n', d);
|
||||
plot(thresholds, pratio);
|
||||
% ROC:
|
||||
subplot(1, 3, 3);
|
||||
plot(false2s, true1s);
|
||||
|
||||
%% discriminability:
|
||||
Ts = 0.01:0.01:1.0;
|
||||
cmax = 100;
|
||||
ds = zeros(length(Ts), 1)
|
||||
for k = 1:length(Ts)
|
||||
T = Ts(k);
|
||||
[c1, b1] = counthist(spikes1, 0.0, tmax, T, cmax);
|
||||
[c2, b2] = counthist(spikes2, 0.0, tmax, T, cmax);
|
||||
[d, thresholds, true1s, false1s, true2s, false2s, pratio] = discriminability(spikes1, spikes2, tmax, T, cmax);
|
||||
ds(k) = d;
|
||||
end
|
||||
figure()
|
||||
plot(Ts, ds)
|
||||
|
||||
|
39
projects/project_fano_time/solution/lifspikes.m
Normal file
39
projects/project_fano_time/solution/lifspikes.m
Normal file
@ -0,0 +1,39 @@
|
||||
function spikes = lifspikes(trials, input, tmaxdt, D)
|
||||
% Generate spike times of a leaky integrate-and-fire neuron.
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmaxdt: in case of a single value stimulus the duration of a trial
|
||||
% in case of a vector as a stimulus the time step
|
||||
% D: the strength of additive white noise
|
||||
|
||||
tau = 0.01;
|
||||
if nargin < 4
|
||||
D = 1e0;
|
||||
end
|
||||
vreset = 0.0;
|
||||
vthresh = 10.0;
|
||||
dt = 5e-5;
|
||||
|
||||
if max(size(input)) == 1
|
||||
input = input * ones(ceil(tmaxdt/dt), 1);
|
||||
else
|
||||
dt = tmaxdt;
|
||||
end
|
||||
spikes = cell(trials, 1);
|
||||
for k=1:trials
|
||||
times = [];
|
||||
j = 1;
|
||||
v = vreset + (vthresh-vreset)*rand(1);
|
||||
noise = sqrt(2.0*D)*randn(length(input), 1)/sqrt(dt);
|
||||
for i=1:length(noise)
|
||||
v = v + (- v + noise(i) + input(i))*dt/tau;
|
||||
if v >= vthresh
|
||||
v = vreset;
|
||||
spiketime = i*dt;
|
||||
times(j) = spiketime;
|
||||
j = j + 1;
|
||||
end
|
||||
end
|
||||
spikes{k} = times;
|
||||
end
|
||||
end
|
28
projects/project_fano_time/solution/savefigpdf.m
Normal file
28
projects/project_fano_time/solution/savefigpdf.m
Normal file
@ -0,0 +1,28 @@
|
||||
function savefigpdf(fig, name, width, height)
|
||||
% Saves figure fig in pdf file name.pdf with appropriately set page size
|
||||
% and fonts
|
||||
|
||||
% default width:
|
||||
if nargin < 3
|
||||
width = 11.7;
|
||||
end
|
||||
% default height:
|
||||
if nargin < 4
|
||||
height = 9.0;
|
||||
end
|
||||
|
||||
% paper:
|
||||
set(fig, 'PaperUnits', 'centimeters');
|
||||
set(fig, 'PaperSize', [width height]);
|
||||
set(fig, 'PaperPosition', [0.0 0.0 width height]);
|
||||
set(fig, 'Color', 'white')
|
||||
|
||||
% font:
|
||||
set(findall(fig, 'type', 'axes'), 'FontSize', 12)
|
||||
set(findall(fig, 'type', 'text'), 'FontSize', 12)
|
||||
|
||||
% save:
|
||||
saveas(fig, name, 'pdf')
|
||||
|
||||
end
|
||||
|
30
projects/project_fano_time/solution/spikeraster.m
Normal file
30
projects/project_fano_time/solution/spikeraster.m
Normal file
@ -0,0 +1,30 @@
|
||||
function spikeraster(spikes, tmin, tmax)
|
||||
% Display a spike raster of the spike times given in spikes.
|
||||
%
|
||||
% spikeraster(spikes, tmax)
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% tmin: plot spike raster starting at tmin seconds
|
||||
% tmax: plot spike raster upto tmax seconds
|
||||
|
||||
ntrials = length(spikes);
|
||||
for k = 1:ntrials
|
||||
times = spikes{k};
|
||||
times = times((times>=tmin) & (times<=tmax));
|
||||
if tmax < 1.5
|
||||
times = 1000.0*times; % conversion to ms
|
||||
end
|
||||
for i = 1:length( times )
|
||||
line([times(i) times(i)],[k-0.4 k+0.4], 'Color', 'k');
|
||||
end
|
||||
end
|
||||
if (tmax-tmin) < 1.5
|
||||
xlabel('Time [ms]');
|
||||
xlim([1000.0*tmin 1000.0*tmax]);
|
||||
else
|
||||
xlabel('Time [s]');
|
||||
xlim([tmin tmax]);
|
||||
end
|
||||
ylabel('Trials');
|
||||
ylim([0.3 ntrials+0.7 ]);
|
||||
end
|
||||
|
Reference in New Issue
Block a user