Merge branch 'master' of whale.am28.uni-tuebingen.de:scientificComputing
This commit is contained in:
commit
4f3dd321f4
@ -8,28 +8,27 @@
|
||||
\vspace{1ex}
|
||||
|
||||
The {\bf code} and the {\bf presentation} should be uploaded to
|
||||
ILIAS at latest on Thursday, February XXXXth, 13:00h. The
|
||||
presentations start on XXXXXXX. Please hand in your
|
||||
presentation as a pdf file. Bundle everything (the pdf and the
|
||||
code) into a {\em single} zip-file.
|
||||
ILIAS at latest on Wednesday, February 8th, 23:59h. We will
|
||||
store all presentations on one computer to allow fast
|
||||
transitions between talks. The presentations start on
|
||||
Thursday 9:00h. Please hand in your presentation as a pdf file. Bundle
|
||||
everything (the pdf, the code, and the data) into a {\em
|
||||
single} zip-file.
|
||||
|
||||
\vspace{1ex}
|
||||
|
||||
The {\bf code} should be exectuable without any further
|
||||
adjustments from our side. This means that you need to include all
|
||||
additional functions you wrote and the data into the
|
||||
zip-file. A single {\em main} script should produce the same
|
||||
{\em figures} that you use in your slides. The figures should
|
||||
follow the guidelines for proper plotting as discussed in the
|
||||
course. The code should be properly commented
|
||||
and comprehensible by a third persons (use proper and consistent
|
||||
variable and function names).
|
||||
|
||||
\vspace{1ex} \textbf{Please write your name and matriculation
|
||||
number as a comment at the top of a script called
|
||||
\texttt{main.m}.} The \texttt{main.m} script then should
|
||||
coordinate the execution of your analysis by e.g. calling
|
||||
sub-scripts and functions with appropriate parameters.
|
||||
adjustments from our side. A single {\em main} script should
|
||||
coordinate the analysis by calling functions and sub-scripts and
|
||||
should produce the {\em same} figures that you use in your
|
||||
slides. The code should be properly commented and comprehensible
|
||||
by a third persons (use proper and consistent variable and
|
||||
function names).
|
||||
|
||||
\vspace{1ex}
|
||||
|
||||
\textbf{Please write your name and matriculation number as a
|
||||
comment at the top of the \texttt{main.m} script.}
|
||||
|
||||
\vspace{1ex}
|
||||
|
||||
@ -37,7 +36,9 @@
|
||||
held in English. In the presentation you should (i) briefly
|
||||
describe the problem, (ii) explain how you solved it
|
||||
algorithmically (don't show your entire code), and (iii) present
|
||||
figures showing your results. We will store all presentations on
|
||||
one computer to allow fast transitions between talks.
|
||||
figures showing your results. All data-related figures you show
|
||||
in the presentation should be produced by your program. It is
|
||||
always a good idea to illustrate the problem with basic plots of
|
||||
the raw-data.
|
||||
|
||||
}}
|
||||
|
10
projects/project_lif/Makefile
Normal file
10
projects/project_lif/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
latex:
|
||||
pdflatex *.tex > /dev/null
|
||||
pdflatex *.tex > /dev/null
|
||||
|
||||
clean:
|
||||
rm -rf *.log *.aux *.zip *.out auto
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat *.m
|
160
projects/project_lif/lif.tex
Normal file
160
projects/project_lif/lif.tex
Normal file
@ -0,0 +1,160 @@
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{headandfoot}
|
||||
\runningheadrule
|
||||
\firstpageheadrule
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
||||
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{listings}
|
||||
\lstset{
|
||||
basicstyle=\ttfamily,
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
columns=flexible,
|
||||
frame=single,
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=11pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
|
||||
|
||||
%\printanswers
|
||||
%\shadedsolutions
|
||||
|
||||
|
||||
\begin{document}
|
||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\sffamily
|
||||
% \begin{flushright}
|
||||
% \gradetable[h][questions]
|
||||
% \end{flushright}
|
||||
|
||||
\begin{center}
|
||||
\input{../disclaimer.tex}
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{questions}
|
||||
\question The temporal evolution of the membrane voltage $V(t)$ of a
|
||||
passive neuron is described by the membrane equation
|
||||
\begin{equation}
|
||||
\label{passivemembrane}
|
||||
\tau \frac{dV}{dt} = -V + E
|
||||
\end{equation}
|
||||
where $\tau=10$\,ms is the membrane time constant and $E(t)$ is the
|
||||
reversal potential that also depends on time $t$.
|
||||
|
||||
Such a differential equation can be numerically solved with the Euler method.
|
||||
For this the time is discretized by a time step $\Delta t=0.1$\,ms.
|
||||
The $i$-th time point is then at time $t_i = i \cdot \Delta t$.
|
||||
In matlab we get the time points $t_i$ simply by
|
||||
\begin{lstlisting}
|
||||
dt = 0.1;
|
||||
tmax = 100.0;
|
||||
time = [0.0:dt:tmax]; % t_i
|
||||
\end{lstlisting}
|
||||
When the membrane potential at time $t_0 = 0$ is $V_0$, the so
|
||||
called ``initial condition'', then we can iteratively compute the
|
||||
membrane potentials $V_i$ for successive time points $t_i$ according to
|
||||
\begin{equation}
|
||||
\label{euler}
|
||||
V_{i+1} = V_i + (-V_i + E_i) \frac{\Delta t}{\tau}
|
||||
\end{equation}
|
||||
|
||||
\begin{parts}
|
||||
\part Write a function that computes the time course of the
|
||||
membrane potential of the passive membrane. The function gets as
|
||||
input arguments the initial condition $V_0$, the vector with the
|
||||
time course of $E(t)$, the value of the membrane time-constant
|
||||
$\tau$, and the time step $\Delta t$.
|
||||
|
||||
\part In order to test your function set $V_0=1$\,mV and $E(t)=0$
|
||||
and compute $V(t)$ for $t_{max}=50$\,ms. Plot $V(t)$ and compare it to
|
||||
the expected result of $V(t) = \exp(-t/\tau)$.
|
||||
|
||||
Why is $V=0$ the resting potential of this neuron?
|
||||
|
||||
\part Response of the passive membrane to a step input.
|
||||
|
||||
Set $V_0=0$. Construct a vector for the input $E(t)$ such that
|
||||
$E(t)=0$ for $t<20$\,ms and $t>70$\,ms and $E(t)=10$\,mV for
|
||||
$20$\,ms $<t<70$\,ms. Plot $E(t)$ and the resulting $V(t)$ for
|
||||
$t_{max}=120$\,ms.
|
||||
|
||||
\part Response to sine waves.
|
||||
|
||||
As an input we now use $E(t)=\sin(2\pi f t)$. Compute the time
|
||||
course of the membrane potential in response to this input
|
||||
($t_{max}=1$\,s). Vary the frequency $f$ between 1 and 100\,Hz. Be
|
||||
careful with the units within the sine function --- $ft$ must be
|
||||
unitless.
|
||||
|
||||
What do you observe?
|
||||
|
||||
\part Transfer function of the passive neuron.
|
||||
|
||||
Measure the amplitude of the voltage responses evoked by the
|
||||
sinusoidal inputs as the maximum of the last 900\,ms of the
|
||||
responses. Plot the amplitude of the response as a function of
|
||||
input frequency. This is the transfer function of the passive neuron.
|
||||
|
||||
How does the transfer function depend on the membrane time
|
||||
constant?
|
||||
|
||||
\part Leaky integrate-and-fire neuron.
|
||||
|
||||
The passive neuron can be turned into a spiking neuron by
|
||||
introducing a fixed voltage threshold. Whenever the computed
|
||||
membrane potential of the passive neuron crosses the voltage
|
||||
threshold a spike is generated and the membrane voltage is set to
|
||||
the reset potential $V_R$ that we here set to zero. ``Generating a
|
||||
spike'' only means that we note down the time of the threshold
|
||||
crossing as a time where an action potential occurred. The
|
||||
waveform of the action potential is not modeled. Here we use a
|
||||
voltage threshold of one.
|
||||
|
||||
Write a function that implements this leaky integrate-and-fire
|
||||
neuron by expanding the function for the passive neuron
|
||||
appropriate. The function returns a vector of spike times.
|
||||
|
||||
Illustrate how this model works by appropriate plot(s) and
|
||||
input(s) $E(t)$, e.g. constant inputs lower and higher than the
|
||||
voltage threshold.
|
||||
|
||||
\part Show the response of the leaky integrate-and-fire neuron to
|
||||
a sine wave $E(t)=A\sin(2\pi ft)$ with $A=2$\,mV and frequency
|
||||
$f=10$, 20, and 30\,Hz.
|
||||
|
||||
\part Compute the firing rate as a function of the frequency of
|
||||
the stimulating sine wave ($A=2$\,mV and frequencies between 5 and
|
||||
30\,Hz). For a spike train with $n$ spikes at times $t_k$ ($k=1,
|
||||
2, \ldots n$) the firing rate is
|
||||
\begin{equation}
|
||||
\label{firingrate}
|
||||
r = \frac{n-1}{t_n - t_1}
|
||||
\end{equation}
|
||||
|
||||
What do you observe? Does the firing rate encode the frequency of
|
||||
the stimulus?
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
116
projects/project_lif/solution/lif.m
Normal file
116
projects/project_lif/solution/lif.m
Normal file
@ -0,0 +1,116 @@
|
||||
%% general settings:
|
||||
tau = 10.0;
|
||||
dt = 0.1;
|
||||
|
||||
%% test passive membrane:
|
||||
tmax = 50.0;
|
||||
time = [0:dt:tmax];
|
||||
E = zeros(length(time), 1);
|
||||
V = passivemembrane(1.0, E, tau, dt);
|
||||
expfun = exp(-time/tau);
|
||||
figure()
|
||||
plot(time, V, 'b', 'linewidth', 2);
|
||||
hold on;
|
||||
plot(time, expfun, 'r');
|
||||
hold off;
|
||||
|
||||
%% step input:
|
||||
tmax = 120.0;
|
||||
time = [0:dt:tmax];
|
||||
E = zeros(length(time), 1);
|
||||
E(20/dt:70/dt) = 10;
|
||||
V = passivemembrane(0.0, E, tau, dt);
|
||||
figure()
|
||||
plot(time, E, 'r');
|
||||
hold on;
|
||||
plot(time, V, 'b', 'linewidth', 2);
|
||||
hold off;
|
||||
|
||||
%% sine waves:
|
||||
tmax = 1000.0;
|
||||
time = [0:dt:tmax];
|
||||
freqs = [1.0 10.0 30.0 100.0];
|
||||
figure();
|
||||
for k = 1:length(freqs)
|
||||
f = freqs(k);
|
||||
E = sin(2*pi*0.001*f*time);
|
||||
V = passivemembrane(0.0, E, tau, dt);
|
||||
subplot(4, 1, k);
|
||||
plot(time, E, 'r');
|
||||
hold on;
|
||||
plot(time, V, 'b', 'linewidth', 2);
|
||||
hold off;
|
||||
end
|
||||
|
||||
|
||||
%% transfer function:
|
||||
tmax = 1000.0;
|
||||
time = [0:dt:tmax];
|
||||
taus = [3.0 10.0 30.0];
|
||||
figure();
|
||||
for tau = taus
|
||||
freqs = [1.0:1.0:100.0];
|
||||
rates = zeros(length(freqs), 1);
|
||||
for k = 1:length(freqs)
|
||||
f = freqs(k);
|
||||
E = sin(2*pi*0.001*f*time);
|
||||
V = passivemembrane(0.0, E, tau, dt);
|
||||
rates(k) = max(V(100/dt:end));
|
||||
end
|
||||
plot(freqs, rates);
|
||||
hold on;
|
||||
end
|
||||
hold off;
|
||||
|
||||
|
||||
%% leaky IaF:
|
||||
tau = 10.0;
|
||||
tmax = 50.0;
|
||||
time = [0:dt:tmax];
|
||||
E = zeros(length(time), 1) + 1.5;
|
||||
[spikes, V] = lifspikes(0.0, E, tau, dt);
|
||||
figure()
|
||||
plot(time, V, 'b', 'linewidth', 2);
|
||||
hold on;
|
||||
plot(spikes, ones(length(spikes), 1), 'or');
|
||||
hold off;
|
||||
|
||||
|
||||
%% leaky IaF and sine input:
|
||||
tau = 10.0;
|
||||
tmax = 500.0;
|
||||
time = [0:dt:tmax];
|
||||
f = 10.0;
|
||||
E = 2.0*sin(2*pi*0.001*f*time);
|
||||
[spikes, V] = lifspikes(0.0, E, tau, dt);
|
||||
figure()
|
||||
subplot(2, 1, 1);
|
||||
plot(time, V, 'b', 'linewidth', 2);
|
||||
hold on;
|
||||
plot(spikes, ones(length(spikes), 1), 'or');
|
||||
hold off;
|
||||
|
||||
|
||||
%% transfer function of LIF spikes:
|
||||
tmax = 1000.0;
|
||||
time = [0:dt:tmax];
|
||||
taus = [3.0 10.0];
|
||||
figure();
|
||||
for tau = taus
|
||||
freqs = [5.0:0.1:30.0];
|
||||
rates = zeros(length(freqs), 1);
|
||||
for k = 1:length(freqs)
|
||||
f = freqs(k);
|
||||
E = 2.0*sin(2*pi*0.001*f*time);
|
||||
[spikes, V] = lifspikes(0.0, E, tau, dt);
|
||||
spikes = spikes(spikes>100.0);
|
||||
if length(spikes) > 2
|
||||
rates(k) = 1000.0*(length(spikes)-1)/(spikes(end)-spikes(1));
|
||||
else
|
||||
rates(k) = 0.0;
|
||||
end
|
||||
end
|
||||
plot(freqs, rates);
|
||||
hold on;
|
||||
end
|
||||
hold off;
|
14
projects/project_lif/solution/lifspikes.m
Normal file
14
projects/project_lif/solution/lifspikes.m
Normal file
@ -0,0 +1,14 @@
|
||||
function [spikes, voltage] = lifspikes(V0, E, tau, dt)
|
||||
voltage = zeros(length(E), 1);
|
||||
V = V0;
|
||||
thresh = 1.0;
|
||||
spikes = [];
|
||||
for k = 1:length(E)
|
||||
voltage(k) = V;
|
||||
if V > thresh
|
||||
spikes = [spikes; k*dt];
|
||||
V = 0.0;
|
||||
end
|
||||
V = V + (-V+E(k))*dt/tau;
|
||||
end
|
||||
end
|
8
projects/project_lif/solution/passivemembrane.m
Normal file
8
projects/project_lif/solution/passivemembrane.m
Normal file
@ -0,0 +1,8 @@
|
||||
function voltage = passivemembrane(V0, E, tau, dt)
|
||||
voltage = zeros(length(E), 1);
|
||||
V = V0;
|
||||
for k = 1:length(E)
|
||||
voltage(k) = V;
|
||||
V = V + (-V+E(k))*dt/tau;
|
||||
end
|
||||
end
|
@ -41,7 +41,7 @@ in food gain the animal switches back to a random walk.
|
||||
|
||||
\begin{questions}
|
||||
\question{} The accompanying dataset (random\_world.mat) contains a
|
||||
single variable stored. This is the world (10000\,m$^2$ area with
|
||||
single variable. This is the world (10000\,m$^2$ area with
|
||||
10\,cm spatial resolution) in which there are randomly distributed
|
||||
food sources (Gaussian blotches of food).
|
||||
|
||||
@ -58,10 +58,12 @@ in food gain the animal switches back to a random walk.
|
||||
with MATLAB)\\[0.5ex]
|
||||
\part{} Same as above, but create a model animal that has some memory,
|
||||
i.e. the direction is kept constant as long as there is a positive
|
||||
gradient in the food gain. Otherwise a random walk is performed\\[0.5ex]
|
||||
gradient in the food gain. Otherwise, a random walk is performed.\\[0.5ex]
|
||||
\part{} Plot a typical example walk also for this agent.\\[0.5ex]
|
||||
\part{} Compare the performance of the two agents. Create appropriate
|
||||
plots and apply statistical methods.
|
||||
\part{} Compare the performance of the two agents. Create
|
||||
appropriate plots and apply statistical methods. You will need to
|
||||
run the simulations several times to get a good estimate of the
|
||||
neumbers.
|
||||
\end{parts}
|
||||
\end{questions}
|
||||
|
||||
|
10
projects/project_serialcorrelation/Makefile
Normal file
10
projects/project_serialcorrelation/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
latex:
|
||||
pdflatex *.tex > /dev/null
|
||||
pdflatex *.tex > /dev/null
|
||||
|
||||
clean:
|
||||
rm -rf *.log *.aux *.zip *.out auto
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat *.m
|
BIN
projects/project_serialcorrelation/baselinespikes.mat
Normal file
BIN
projects/project_serialcorrelation/baselinespikes.mat
Normal file
Binary file not shown.
365
projects/project_serialcorrelation/code/DataLoader.py
Normal file
365
projects/project_serialcorrelation/code/DataLoader.py
Normal file
@ -0,0 +1,365 @@
|
||||
from os import path
|
||||
try:
|
||||
from itertools import izip
|
||||
except:
|
||||
izip = zip
|
||||
import types
|
||||
from numpy import array, arange, NaN, fromfile, float32, asarray, unique, squeeze, Inf, isnan, fromstring
|
||||
from numpy.core.records import fromarrays
|
||||
#import nixio as nix
|
||||
import re
|
||||
import warnings
|
||||
|
||||
identifiers = {
|
||||
'stimspikes1.dat': lambda info: ('RePro' in info[-1] and info[-1]['RePro'] == 'FileStimulus'),
|
||||
'samallspikes1.dat': lambda info: ('RePro' in info[-1] and info[-1]['RePro'] == 'SAM'),
|
||||
}
|
||||
|
||||
|
||||
def isfloat(value):
|
||||
try:
|
||||
float(value)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
|
||||
def info_filter(iter, filterfunc):
|
||||
for info, key, dat in iter:
|
||||
if filterfunc(info):
|
||||
yield info, key, dat
|
||||
|
||||
def iload_io_pairs(basedir, spikefile, traces, filterfunc=None):
|
||||
"""
|
||||
Iterator that returns blocks of spike traces and spike times from the base directory basedir (e.g. 2014-06-06-aa)
|
||||
and the spiketime file (e.g. stimspikes1.dat). A filter function can filter out unwanted blocks. It gets the info
|
||||
(see iload and iload trace_trials) from all traces and spike times and has to return True is the block is wanted
|
||||
and False otherwise.
|
||||
|
||||
:param basedir: basis directory of the recordings (e.g. 2014-06-06-aa)
|
||||
:param spikefile: spikefile (e.g. stimspikes1.dat)
|
||||
:param traces: trace numbers as a list (e.g. [1,2])
|
||||
:param filterfunc: function that gets the infos from all traces and spike times and indicates whether the block is wanted or not
|
||||
"""
|
||||
|
||||
if filterfunc is None: filterfunc = lambda inp: True
|
||||
|
||||
if type(traces) is not types.ListType:
|
||||
traces = [traces]
|
||||
|
||||
assert spikefile in identifiers, """iload_io_pairs does not know how to identify trials in stimuli.dat which
|
||||
correspond to trials in {0}. Please update pyRELACS.DataLoader.identifiers
|
||||
accordingly""".format(spikefile)
|
||||
iterators = [info_filter(iload_trace_trials(basedir, tn), identifiers[spikefile]) for tn in traces] \
|
||||
+ [iload_spike_blocks(basedir + '/' + spikefile)]
|
||||
|
||||
for stuff in izip(*iterators):
|
||||
info, key, dat = zip(*stuff)
|
||||
if filterfunc(*info):
|
||||
yield info, key, dat
|
||||
|
||||
def iload_spike_blocks(filename):
|
||||
"""
|
||||
Loades spike times from filename and merges trials with incremental trial numbers into one block.
|
||||
Spike times are assumed to be in seconds and are converted into ms.
|
||||
"""
|
||||
current_trial = -1
|
||||
ret_dat = []
|
||||
old_info = old_key = None
|
||||
for info, key, dat in iload(filename):
|
||||
if 'trial' in info[-1]:
|
||||
if int(info[-1]['trial']) != current_trial + 1:
|
||||
yield old_info[:-1], key, ret_dat
|
||||
ret_dat = []
|
||||
|
||||
current_trial = int(info[-1]['trial'])
|
||||
if not any(isnan(dat)):
|
||||
ret_dat.append(squeeze(dat)/1000.)
|
||||
else:
|
||||
ret_dat.append(array([]))
|
||||
old_info, old_key = info, key
|
||||
|
||||
else:
|
||||
if len(ret_dat) > 0:
|
||||
yield old_info[:-1], old_key, ret_dat
|
||||
ret_dat = []
|
||||
yield info, key, dat
|
||||
else:
|
||||
if len(ret_dat) > 0:
|
||||
yield old_info[:-1], old_key, ret_dat
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def iload_trace_trials(basedir, trace_no=1, before=0.0, after=0.0 ):
|
||||
"""
|
||||
returns:
|
||||
info : metadata from stimuli.dat
|
||||
key : key from stimuli.dat
|
||||
data : the data of the specified trace of all trials
|
||||
"""
|
||||
x = fromfile('%s/trace-%i.raw' % (basedir, trace_no), float32)
|
||||
p = re.compile('([-+]?\d*\.\d+|\d+)\s*(\w+)')
|
||||
|
||||
for info, key, dat in iload('%s/stimuli.dat' % (basedir,)):
|
||||
X = []
|
||||
val, unit = p.match(info[-1]['duration']).groups()
|
||||
val = float( val )
|
||||
if unit == 'ms' :
|
||||
val *= 0.001
|
||||
duration_index = key[2].index('duration')
|
||||
|
||||
# if 'RePro' in info[1] and info[1]['RePro'] == 'FileStimulus':
|
||||
# embed()
|
||||
# exit()
|
||||
sval, sunit = p.match(info[0]['sample interval%i' % trace_no]).groups()
|
||||
sval = float( sval )
|
||||
if sunit == 'ms' :
|
||||
sval *= 0.001
|
||||
|
||||
l = int(before / sval)
|
||||
r = int((val+after) / sval)
|
||||
|
||||
if dat.shape == (1,1) and dat[0,0] == 0:
|
||||
warnings.warn("iload_trace_trials: Encountered incomplete '-0' trial.")
|
||||
yield info, key, array([])
|
||||
continue
|
||||
|
||||
|
||||
for col, duration in zip(asarray([e[trace_no - 1] for e in dat], dtype=int), asarray([e[duration_index] for e in dat], dtype=float32)): #dat[:,trace_no-1].astype(int):
|
||||
tmp = x[col-l:col + r]
|
||||
|
||||
if duration < 0.001: # if the duration is less than 1ms
|
||||
warnings.warn("iload_trace_trials: Skipping one trial because its duration is <1ms and therefore it is probably rubbish")
|
||||
continue
|
||||
|
||||
if len(X) > 0 and len(tmp) != len(X[0]):
|
||||
warnings.warn("iload_trace_trials: Setting one trial to NaN because it appears to be incomplete!")
|
||||
X.append(NaN*X[0])
|
||||
else:
|
||||
X.append(tmp)
|
||||
|
||||
yield info, key, asarray(X)
|
||||
|
||||
|
||||
def iload_traces(basedir, repro='', before=0.0, after=0.0 ):
|
||||
"""
|
||||
returns:
|
||||
info : metadata from stimuli.dat
|
||||
key : key from stimuli.dat
|
||||
time : an array for the time axis
|
||||
data : the data of all traces of a single trial
|
||||
"""
|
||||
p = re.compile('([-+]?\d*\.\d+|\d+)\s*(\w+)')
|
||||
|
||||
# open traces files:
|
||||
sf = []
|
||||
for trace in xrange( 1, 1000000 ) :
|
||||
if path.isfile( '%s/trace-%i.raw' % (basedir, trace) ) :
|
||||
sf.append( open( '%s/trace-%i.raw' % (basedir, trace), 'rb' ) )
|
||||
else :
|
||||
break
|
||||
|
||||
for info, key, dat in iload('%s/stimuli.dat' % (basedir,)):
|
||||
|
||||
if len( repro ) > 0 and repro != info[1]['RePro'] :
|
||||
continue
|
||||
|
||||
val, unit = p.match(info[-1]['duration']).groups()
|
||||
val = float( val )
|
||||
if unit == 'ms' :
|
||||
val *= 0.001
|
||||
duration_index = key[2].index('duration')
|
||||
|
||||
sval, sunit = p.match(info[0]['sample interval%i' % 1]).groups()
|
||||
sval = float( sval )
|
||||
if sunit == 'ms' :
|
||||
sval *= 0.001
|
||||
|
||||
l = int(before / sval)
|
||||
r = int((val+after) / sval)
|
||||
|
||||
if dat.shape == (1,1) and dat[0,0] == 0:
|
||||
warnings.warn("iload_traces: Encountered incomplete '-0' trial.")
|
||||
yield info, key, array([])
|
||||
continue
|
||||
|
||||
deltat, unit = p.match(info[0]['sample interval1']).groups()
|
||||
deltat = float( deltat )
|
||||
if unit == 'ms' :
|
||||
deltat *= 0.001
|
||||
time = arange( 0.0, l+r )*deltat - before
|
||||
|
||||
for d in dat :
|
||||
duration = d[duration_index]
|
||||
if duration < 0.001: # if the duration is less than 1ms
|
||||
warnings.warn("iload_traces: Skipping one trial because its duration is <1ms and therefore it is probably rubbish")
|
||||
continue
|
||||
|
||||
x = []
|
||||
for trace in xrange( len( sf ) ) :
|
||||
col = int(d[trace])
|
||||
sf[trace].seek( (col-l)*4 )
|
||||
buffer = sf[trace].read( (l+r)*4 )
|
||||
tmp = fromstring(buffer, float32)
|
||||
if len(x) > 0 and len(tmp) != len(x[0]):
|
||||
warnings.warn("iload_traces: Setting one trial to NaN because it appears to be incomplete!")
|
||||
x.append(NaN*x[0])
|
||||
else:
|
||||
x.append(tmp)
|
||||
|
||||
yield info, key, time, asarray( x )
|
||||
|
||||
|
||||
def iload(filename):
|
||||
meta_data = []
|
||||
new_meta_data = []
|
||||
key = []
|
||||
|
||||
within_key = within_meta_block = within_data_block = False
|
||||
currkey = None
|
||||
data = []
|
||||
|
||||
with open(filename, 'r') as fid:
|
||||
for line in fid:
|
||||
|
||||
line = line.rstrip().lstrip()
|
||||
|
||||
if within_data_block and (line.startswith('#') or not line):
|
||||
within_data_block = False
|
||||
|
||||
yield list(meta_data), tuple(key), array(data)
|
||||
data = []
|
||||
|
||||
# Key parsing
|
||||
if line.startswith('#Key'):
|
||||
key = []
|
||||
within_key = True
|
||||
continue
|
||||
if within_key:
|
||||
if not line.startswith('#'):
|
||||
within_key = False
|
||||
else:
|
||||
|
||||
key.append(tuple([e.strip() for e in line[1:].split(" ") if len(e.strip()) > 0]))
|
||||
continue
|
||||
|
||||
# fast forward to first data point or meta data
|
||||
if not line:
|
||||
within_key = within_meta_block = False
|
||||
currkey = None
|
||||
continue
|
||||
# meta data blocks
|
||||
elif line.startswith('#'): # cannot be a key anymore
|
||||
if not within_meta_block:
|
||||
within_meta_block = True
|
||||
new_meta_data.append({})
|
||||
|
||||
if ':' in line:
|
||||
tmp = [e.rstrip().lstrip() for e in line[1:].split(':')]
|
||||
elif '=' in line:
|
||||
tmp = [e.rstrip().lstrip() for e in line[1:].split('=')]
|
||||
else:
|
||||
currkey = line[1:].rstrip().lstrip()
|
||||
new_meta_data[-1][currkey] = {}
|
||||
continue
|
||||
|
||||
if currkey is None:
|
||||
new_meta_data[-1][tmp[0]] = tmp[1]
|
||||
else:
|
||||
new_meta_data[-1][currkey][tmp[0]] = tmp[1]
|
||||
|
||||
else:
|
||||
|
||||
if not within_data_block:
|
||||
within_data_block = True
|
||||
n = len(new_meta_data)
|
||||
meta_data[-n:] = new_meta_data
|
||||
new_meta_data = []
|
||||
currkey = None
|
||||
within_key = within_meta_block = False
|
||||
data.append([float(e) if (e != '-0' and isfloat(e)) else NaN for e in line.split()])
|
||||
else: # if for loop is finished, return the data we have so far
|
||||
if within_data_block and len(data) > 0:
|
||||
yield list(meta_data), tuple(key), array(data)
|
||||
|
||||
|
||||
def recload(filename):
|
||||
for meta, key, dat in iload(filename):
|
||||
yield meta, fromarrays(dat.T, names=key[0])
|
||||
|
||||
|
||||
def load(filename):
|
||||
"""
|
||||
|
||||
Loads a data file saved by relacs. Returns a tuple of dictionaries
|
||||
containing the data and the header information
|
||||
|
||||
:param filename: Filename of the data file.
|
||||
:type filename: string
|
||||
:returns: a tuple of dictionaries containing the head information and the data.
|
||||
:rtype: tuple
|
||||
|
||||
"""
|
||||
with open(filename, 'r') as fid:
|
||||
L = [l.lstrip().rstrip() for l in fid.readlines()]
|
||||
|
||||
ret = []
|
||||
dat = {}
|
||||
X = []
|
||||
keyon = False
|
||||
currkey = None
|
||||
for l in L:
|
||||
# if empty line and we have data recorded
|
||||
if (not l or l.startswith('#')) and len(X) > 0:
|
||||
keyon = False
|
||||
currkey = None
|
||||
dat['data'] = array(X)
|
||||
ret.append(dat)
|
||||
X = []
|
||||
dat = {}
|
||||
|
||||
if '---' in l:
|
||||
continue
|
||||
if l.startswith('#'):
|
||||
if ":" in l:
|
||||
tmp = [e.rstrip().lstrip() for e in l[1:].split(':')]
|
||||
if currkey is None:
|
||||
dat[tmp[0]] = tmp[1]
|
||||
else:
|
||||
dat[currkey][tmp[0]] = tmp[1]
|
||||
elif "=" in l:
|
||||
tmp = [e.rstrip().lstrip() for e in l[1:].split('=')]
|
||||
if currkey is None:
|
||||
dat[tmp[0]] = tmp[1]
|
||||
else:
|
||||
dat[currkey][tmp[0]] = tmp[1]
|
||||
elif l[1:].lower().startswith('key'):
|
||||
dat['key'] = []
|
||||
|
||||
keyon = True
|
||||
elif keyon:
|
||||
|
||||
dat['key'].append(tuple([e.lstrip().rstrip() for e in l[1:].split()]))
|
||||
else:
|
||||
currkey = l[1:].rstrip().lstrip()
|
||||
dat[currkey] = {}
|
||||
|
||||
elif l: # if l != ''
|
||||
keyon = False
|
||||
currkey = None
|
||||
X.append([float(e) for e in l.split()])
|
||||
|
||||
if len(X) > 0:
|
||||
dat['data'] = array(X)
|
||||
else:
|
||||
dat['data'] = []
|
||||
ret.append(dat)
|
||||
|
||||
return tuple(ret)
|
||||
|
||||
|
||||
|
||||
|
||||
|
BIN
projects/project_serialcorrelation/code/DataLoader.pyc
Normal file
BIN
projects/project_serialcorrelation/code/DataLoader.pyc
Normal file
Binary file not shown.
@ -0,0 +1,30 @@
|
||||
03-03-28-ab
|
||||
03-03-28-ac
|
||||
03-03-28-af
|
||||
03-03-31-ad
|
||||
03-03-31-af
|
||||
03-03-31-ai
|
||||
03-03-31-ak
|
||||
03-03-31-al
|
||||
03-04-07-ab
|
||||
03-04-07-ac
|
||||
03-04-07-ad
|
||||
03-04-07-ae
|
||||
03-04-07-af
|
||||
03-04-07-ag
|
||||
03-04-07-aj
|
||||
03-04-10-aa
|
||||
03-04-10-ac
|
||||
03-04-10-ad
|
||||
03-04-10-ae
|
||||
03-04-10-af
|
||||
03-04-10-ag
|
||||
03-04-10-ah
|
||||
03-04-10-ai
|
||||
03-04-10-aj
|
||||
03-04-14-ab
|
||||
03-04-14-ad
|
||||
03-04-14-ae
|
||||
03-04-14-af
|
||||
03-04-14-ah
|
||||
03-04-16-ab
|
45
projects/project_serialcorrelation/code/transformdata.py
Normal file
45
projects/project_serialcorrelation/code/transformdata.py
Normal file
@ -0,0 +1,45 @@
|
||||
import numpy as np
|
||||
from scipy.io import savemat
|
||||
import matplotlib.pyplot as plt
|
||||
import DataLoader as dl
|
||||
|
||||
cells = []
|
||||
spikes = []
|
||||
with open('goodbaselinefiles.dat') as sf:
|
||||
for line in sf:
|
||||
cell = line.strip()
|
||||
datapath = '/data/jan/data/efish/smallchirps/single/data/' + cell
|
||||
for info, key, data in dl.iload(datapath + '/basespikes.dat'):
|
||||
cells.append(cell)
|
||||
spikes.append(data[:, 0])
|
||||
break
|
||||
|
||||
spikesobj = np.zeros((len(spikes), ), dtype=np.object)
|
||||
cellsobj = np.zeros((len(cells), ), dtype=np.object)
|
||||
for k in range(len(spikes)):
|
||||
spikesobj[k] = 0.001*spikes[k]
|
||||
cellsobj[k] = cells[k]
|
||||
savemat('baselinespikes.mat', mdict={'cells': cellsobj, 'spikes': spikesobj})
|
||||
|
||||
exit()
|
||||
|
||||
trial = 0
|
||||
intensities = []
|
||||
spikes = []
|
||||
for info, key, data in dl.iload('03-04-07-ab-fispikes.dat'):
|
||||
if info[0]['Index'] == '1':
|
||||
trial = int(info[1]['Trial'])
|
||||
intensity = float(info[1]['Intensity'].replace('mV/cm', ''))
|
||||
if trial == 0:
|
||||
intensities.append(intensity)
|
||||
spikes.append([])
|
||||
prevtrial = trial
|
||||
spikes[-1].append(data[:, 0])
|
||||
|
||||
spikesobj = np.zeros((len(spikes), len(spikes[0])), dtype=np.object)
|
||||
for k in range(len(spikes)):
|
||||
for j in range(len(spikes[k])):
|
||||
spikesobj[k, j] = 0.001*spikes[k][j]
|
||||
|
||||
savemat('ficurvespikes.mat', mdict={'intensities': intensities, 'spikes': spikesobj})
|
||||
|
81
projects/project_serialcorrelation/serialcorrelation.tex
Normal file
81
projects/project_serialcorrelation/serialcorrelation.tex
Normal file
@ -0,0 +1,81 @@
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{headandfoot}
|
||||
\runningheadrule
|
||||
\firstpageheadrule
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
||||
%\printanswers
|
||||
%\shadedsolutions
|
||||
|
||||
|
||||
\begin{document}
|
||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\sffamily
|
||||
% \begin{flushright}
|
||||
% \gradetable[h][questions]
|
||||
% \end{flushright}
|
||||
|
||||
\begin{center}
|
||||
\input{../disclaimer.tex}
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{questions}
|
||||
\question P-unit electroreceptor afferents of the gymnotiform weakly
|
||||
electric fish \textit{Apteronotus leptorhynchus} are spontaneously
|
||||
active when the fish is not electrically stimulated.
|
||||
\begin{itemize}
|
||||
\item How does the firing rates and the serial correlations of the
|
||||
interspike intervals vary between different cells?
|
||||
\end{itemize}
|
||||
|
||||
In the file \texttt{baselinespikes.mat} you find two variables:
|
||||
\texttt{cells} is a cell-array with the names of the recorded cells
|
||||
and \texttt{spikes} is a cell array containing the spike times in
|
||||
seconds of recorded spontaneous activity for each of these cells.
|
||||
\begin{parts}
|
||||
\part Load the data! How many cells are contained in the file?
|
||||
|
||||
\part Plot the spike rasters of a few cells.
|
||||
|
||||
For the presentation, choose a few cells based on the results of
|
||||
this project.
|
||||
|
||||
By just looking on the spike rasters, what are the differences
|
||||
betwen the cells?
|
||||
|
||||
\part Compute the firing rate of each cell, i.e. number of spikes per time.
|
||||
|
||||
Illustrate the results by means of a histogram and/or box whisker plot.
|
||||
|
||||
\part Compute and plot the serial correlations between interspike intervals up to lag 10.
|
||||
|
||||
What do you observe? In what way are the interspike-interval
|
||||
correlations similar betwen the cells? How do they differ?
|
||||
|
||||
\part Implement a permutation test for computing the significance
|
||||
at a 1\,\% level of the serial correlations. Illustrate for a few
|
||||
cells the computed serial correlations and the 1\,\% and 99\,\%
|
||||
percentile from the permutation test. At which lag are the serial
|
||||
correlations clearly significant?
|
||||
|
||||
\part Are the serial correlations somehow dependent on the firing rate?
|
||||
|
||||
Plot the significant correlations against the firing rate. Do you
|
||||
observe any dependence?
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
9
projects/project_serialcorrelation/solution/firingrate.m
Normal file
9
projects/project_serialcorrelation/solution/firingrate.m
Normal file
@ -0,0 +1,9 @@
|
||||
function rate = firingrate(spikes, tmin, tmax)
|
||||
% mean firing rate between tmin and tmax.
|
||||
rates = zeros(length(spikes), 1);
|
||||
for i = 1:length(spikes)
|
||||
times= spikes{i};
|
||||
rates(i) = length(times((times>=tmin)&(times<=tmax)))/(tmax-tmin);
|
||||
end
|
||||
rate = mean(rates);
|
||||
end
|
26
projects/project_serialcorrelation/solution/isiserialcorr.m
Normal file
26
projects/project_serialcorrelation/solution/isiserialcorr.m
Normal file
@ -0,0 +1,26 @@
|
||||
function isicorr = isiserialcorr(spikes, maxlag)
|
||||
% serial correlation of interspike intervals
|
||||
%
|
||||
% isicorr = isiserialcorr(spikes, maxlag)
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: spike times in seconds
|
||||
% maxlag: the maximum lag
|
||||
%
|
||||
% Returns:
|
||||
% isicorr: vector with the serial correlations for lag 0 to maxlag
|
||||
|
||||
isivec = [];
|
||||
for k = 1:length(spikes)
|
||||
times = spikes{k};
|
||||
isivec = [isivec; diff(times(:))];
|
||||
end
|
||||
|
||||
lags = 0:maxlag;
|
||||
isicorr = zeros(size(lags));
|
||||
for k = 1:length(lags)
|
||||
lag = lags(k);
|
||||
if length(isivec) > lag+10 % ensure "enough" data
|
||||
isicorr(k) = corr(isivec(1:end-lag), isivec(lag+1:end));
|
||||
end
|
||||
end
|
@ -0,0 +1,46 @@
|
||||
function [isicorr, lowerbound, upperbound] = isiserialcorrbootstrap(spikes, maxlag)
|
||||
% serial correlation of interspike intervals
|
||||
%
|
||||
% isicorr = isiserialcorrbootstrap(spikes, maxlag)
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: spike times in seconds
|
||||
% maxlag: the maximum lag
|
||||
%
|
||||
% Returns:
|
||||
% isicorr: vector with the serial correlations for lag 0 to maxlag
|
||||
|
||||
isivec = [];
|
||||
for k = 1:length(spikes)
|
||||
times = spikes{k};
|
||||
isivec = [isivec; diff(times(:))];
|
||||
end
|
||||
|
||||
lags = 0:maxlag;
|
||||
|
||||
isicorr = zeros(size(lags));
|
||||
for k = 1:length(lags)
|
||||
lag = lags(k);
|
||||
if length(isivec) > lag+10 % ensure "enough" data
|
||||
isicorr(k) = corr(isivec(1:end-lag), isivec(lag+1:end));
|
||||
end
|
||||
end
|
||||
|
||||
repeats = 1000;
|
||||
isicorrshuffled = zeros(repeats, length(lags));
|
||||
for i = 1:repeats
|
||||
isishuffled = isivec(randperm(length(isivec)));
|
||||
for k = 1:length(lags)
|
||||
lag = lags(k);
|
||||
if length(isivec) > lag+10 % ensure "enough" data
|
||||
isicorrshuffled(i, k) = corr(isishuffled(1:end-lag), isishuffled(lag+1:end));
|
||||
end
|
||||
end
|
||||
end
|
||||
bounds = prctile(isicorrshuffled, [1.0 99], 1);
|
||||
lowerbound = bounds(1, :);
|
||||
upperbound = bounds(2, :);
|
||||
end
|
||||
|
||||
|
||||
|
@ -0,0 +1,64 @@
|
||||
%% load data:
|
||||
data = load('baselinespikes.mat');
|
||||
spikes = data.spikes;
|
||||
cells = data.cells;
|
||||
|
||||
%% print raster:
|
||||
maxn = length(spikes);
|
||||
if maxn > 5
|
||||
maxn = 5;
|
||||
end
|
||||
figure()
|
||||
for k = 1:maxn
|
||||
subplot(maxn, 1, k);
|
||||
spikeraster(spikes(k), 0.0, 1.0)
|
||||
title(cells{k})
|
||||
end
|
||||
|
||||
%% firing rates:
|
||||
rates = zeros(length(spikes), 1);
|
||||
for k = 1:length(spikes)
|
||||
rates(k) = firingrate(spikes(k), 0.0, 9.0);
|
||||
end
|
||||
figure();
|
||||
subplot(1, 2, 1);
|
||||
boxplot(rates);
|
||||
subplot(1, 2, 2);
|
||||
hist(rates, 20)
|
||||
|
||||
|
||||
%% serial correlations:
|
||||
maxlag = 10;
|
||||
lags = 0:maxlag;
|
||||
corrs = zeros(length(spikes), 1);
|
||||
figure();
|
||||
for k = 1:length(spikes)
|
||||
isicorrs = isiserialcorr(spikes(k), maxlag);
|
||||
corrs(k) = isicorrs(2);
|
||||
plot(lags, isicorrs);
|
||||
hold on;
|
||||
end
|
||||
hold off;
|
||||
figure();
|
||||
plot(rates, corrs, 'o');
|
||||
ylim([-0.7 0])
|
||||
|
||||
|
||||
%% bootstrap serial correlations:
|
||||
maxlag = 10;
|
||||
lags = 0:maxlag;
|
||||
figure();
|
||||
for k = 1:maxn
|
||||
[isicorr, lowerbound, upperbound] = isiserialcorrbootstrap(spikes(k), maxlag);
|
||||
subplot(maxn, 1, k);
|
||||
plot(lags, isicorr, 'b', 'linewidth', 2)
|
||||
hold on;
|
||||
plot(lags, lowerbound, 'r', 'linewidth', 1)
|
||||
plot(lags, upperbound, 'r', 'linewidth', 1)
|
||||
hold off;
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
30
projects/project_serialcorrelation/solution/spikeraster.m
Normal file
30
projects/project_serialcorrelation/solution/spikeraster.m
Normal file
@ -0,0 +1,30 @@
|
||||
function spikeraster(spikes, tmin, tmax)
|
||||
% Display a spike raster of the spike times given in spikes.
|
||||
%
|
||||
% spikeraster(spikes, tmax)
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% tmin: plot spike raster starting at tmin seconds
|
||||
% tmax: plot spike raster upto tmax seconds
|
||||
|
||||
ntrials = length(spikes);
|
||||
for k = 1:ntrials
|
||||
times = spikes{k};
|
||||
times = times((times>=tmin) & (times<=tmax));
|
||||
if tmax < 1.5
|
||||
times = 1000.0*times; % conversion to ms
|
||||
end
|
||||
for i = 1:length( times )
|
||||
line([times(i) times(i)],[k-0.4 k+0.4], 'Color', 'k');
|
||||
end
|
||||
end
|
||||
if (tmax-tmin) < 1.5
|
||||
xlabel('Time [ms]');
|
||||
xlim([1000.0*tmin 1000.0*tmax]);
|
||||
else
|
||||
xlabel('Time [s]');
|
||||
xlim([tmin tmax]);
|
||||
end
|
||||
ylabel('Trials');
|
||||
ylim([0.3 ntrials+0.7 ]);
|
||||
end
|
||||
|
Binary file not shown.
Reference in New Issue
Block a user