From 479e51588bb979970302c9bdb7c452ee3015d806 Mon Sep 17 00:00:00 2001 From: Jan Benda Date: Mon, 25 Nov 2019 23:18:29 +0100 Subject: [PATCH] [statistics] fixed pagebreaks --- statistics/lecture/statistics.tex | 4 ---- 1 file changed, 4 deletions(-) diff --git a/statistics/lecture/statistics.tex b/statistics/lecture/statistics.tex index 834f700..5923d8f 100644 --- a/statistics/lecture/statistics.tex +++ b/statistics/lecture/statistics.tex @@ -292,7 +292,6 @@ deviation $\sigma$. The factor in front of the exponential function ensures the normalization to $\int p_g(x) \, dx = 1$, \eqnref{pdfnorm}. -\newpage \begin{exercise}{gaussianpdf.m}{gaussianpdf.out} \begin{enumerate} \item Plot the probability density of the normal distribution $p_g(x)$. @@ -305,7 +304,6 @@ $\int p_g(x) \, dx = 1$, \eqnref{pdfnorm}. \end{enumerate} \end{exercise} -\newpage Histograms of real valued data depend on both the number of data values \emph{and} the chosen bin width. As in the example with the die (\figref{diehistogramsfig} left), the height of the histogram gets @@ -349,13 +347,11 @@ probability density functions like the one of the normal distribution normal distributions (blue).} \end{figure} -\newpage \begin{exercise}{gaussianbinsnorm.m}{} Normalize the histogram of the previous exercise to a probability density. \end{exercise} -\newpage \subsection{Kernel densities} A problem of using histograms for estimating probability densities is