[bootstrap] split exercises
This commit is contained in:
parent
520f011f67
commit
475b3148c8
@ -1,4 +1,3 @@
|
|||||||
TEXFILES=resampling-1.tex
|
TEXFILES=$(wildcard resampling-?.tex)
|
||||||
# resampling2.tex
|
|
||||||
|
|
||||||
include ../../exercises.mk
|
include ../../exercises.mk
|
||||||
|
@ -18,69 +18,6 @@
|
|||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\question \qt{Read chapter 7 of the script on ``resampling methods''!}\vspace{-3ex}
|
\question \qt{Read chapter 7 of the script on ``resampling methods''!}\vspace{-3ex}
|
||||||
|
|
||||||
\question \qt{Bootstrap the standard error of the mean}
|
|
||||||
We want to compute the standard error of the mean of a data set by
|
|
||||||
means of the bootstrap method and compare the result with the formula
|
|
||||||
``standard deviation divided by the square-root of $n$''.
|
|
||||||
\begin{parts}
|
|
||||||
\part Download the file \code{thymusglandweights.dat} from Ilias.
|
|
||||||
This is a data set of the weights of the thymus glands of 14-day old chicken embryos
|
|
||||||
measured in milligram.
|
|
||||||
\part Load the data into Matlab (\code{load} function).
|
|
||||||
\part Compute histogram, mean, and standard error of the mean of the first 80 data points.
|
|
||||||
\part Compute the standard error of the mean of the first 80 data
|
|
||||||
points by bootstrapping the data 500 times. Write a function that
|
|
||||||
bootstraps the standard error of the mean of a given data set. The
|
|
||||||
function should also return a vector with the bootstrapped means.
|
|
||||||
\part Compute the 95\,\% confidence interval for the mean from the
|
|
||||||
bootstrap distribution (\code{quantile()} function) --- the
|
|
||||||
interval that contains the true mean with 95\,\% probability.
|
|
||||||
\part Use the whole data set and the bootstrap method for computing
|
|
||||||
the dependence of the standard error of the mean from the sample
|
|
||||||
size $n$.
|
|
||||||
\part Compare your result with the formula for the standard error
|
|
||||||
$\sigma/\sqrt{n}$.
|
|
||||||
\end{parts}
|
|
||||||
\begin{solution}
|
|
||||||
\lstinputlisting{bootstrapmean.m}
|
|
||||||
\lstinputlisting{bootstraptymus.m}
|
|
||||||
\includegraphics[width=0.5\textwidth]{bootstraptymus-datahist}
|
|
||||||
\includegraphics[width=0.5\textwidth]{bootstraptymus-meanhist}
|
|
||||||
\includegraphics[width=0.5\textwidth]{bootstraptymus-samples}
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
|
|
||||||
\question \qt{Student t-distribution}
|
|
||||||
The distribution of Student's t, $t=\bar x/(\sigma_x/\sqrt{n})$, the
|
|
||||||
estimated mean $\bar x$ of a data set of size $n$ divided by the
|
|
||||||
estimated standard error of the mean $\sigma_x/\sqrt{n}$, where
|
|
||||||
$\sigma_x$ is the estimated standard deviation, is not a normal
|
|
||||||
distribution but a Student-t distribution. We want to compute the
|
|
||||||
Student-t distribution and compare it with the normal distribution.
|
|
||||||
\begin{parts}
|
|
||||||
\part Generate 100000 normally distributed random numbers.
|
|
||||||
\part Draw from these data 1000 samples of size $n=3$, 5, 10, and
|
|
||||||
50. For each sample size $n$ ...
|
|
||||||
\part ... compute the mean $\bar x$ of the samples and plot the
|
|
||||||
probability density of these means.
|
|
||||||
\part ... compare the resulting probability densities with corresponding
|
|
||||||
normal distributions.
|
|
||||||
\part ... compute Student's $t=\bar x/(\sigma_x/\sqrt{n})$ and compare its
|
|
||||||
distribution with the normal distribution with standard deviation of
|
|
||||||
one. Is $t$ normally distributed? Under which conditions is $t$
|
|
||||||
normally distributed?
|
|
||||||
\end{parts}
|
|
||||||
\newsolutionpage
|
|
||||||
\begin{solution}
|
|
||||||
\lstinputlisting{tdistribution.m}
|
|
||||||
\includegraphics[width=1\textwidth]{tdistribution-n03}\\
|
|
||||||
\includegraphics[width=1\textwidth]{tdistribution-n05}\\
|
|
||||||
\includegraphics[width=1\textwidth]{tdistribution-n10}\\
|
|
||||||
\includegraphics[width=1\textwidth]{tdistribution-n50}
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
|
|
||||||
\continue
|
|
||||||
\question \qt{Permutation test of correlations} \label{correlationtest}
|
\question \qt{Permutation test of correlations} \label{correlationtest}
|
||||||
We want to compute the significance of a correlation by means of a permutation test.
|
We want to compute the significance of a correlation by means of a permutation test.
|
||||||
\begin{parts}
|
\begin{parts}
|
||||||
@ -109,6 +46,7 @@ y = randn(n, 1) + a*x;
|
|||||||
\includegraphics[width=1\textwidth]{correlationsignificance}
|
\includegraphics[width=1\textwidth]{correlationsignificance}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
|
\newsolutionpage
|
||||||
\question \qt{Bootstrap the correlation coefficient}
|
\question \qt{Bootstrap the correlation coefficient}
|
||||||
The permutation test generates the distribution of the null hypothesis
|
The permutation test generates the distribution of the null hypothesis
|
||||||
of uncorrelated data and we check whether the correlation coefficient
|
of uncorrelated data and we check whether the correlation coefficient
|
||||||
@ -137,7 +75,7 @@ We take the same data set that we have generated in exercise
|
|||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
|
|
||||||
\continuepage
|
\continue
|
||||||
\question \qt{Permutation test of difference of means}
|
\question \qt{Permutation test of difference of means}
|
||||||
We want to test whether two data sets come from distributions that
|
We want to test whether two data sets come from distributions that
|
||||||
differ in their mean by means of a permutation test.
|
differ in their mean by means of a permutation test.
|
||||||
|
84
bootstrap/exercises/resampling-2.tex
Normal file
84
bootstrap/exercises/resampling-2.tex
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
\documentclass[12pt,a4paper,pdftex]{exam}
|
||||||
|
|
||||||
|
\newcommand{\exercisetopic}{Resampling}
|
||||||
|
\newcommand{\exercisenum}{X2}
|
||||||
|
\newcommand{\exercisedate}{December 14th, 2020}
|
||||||
|
|
||||||
|
\input{../../exercisesheader}
|
||||||
|
|
||||||
|
\firstpagefooter{Prof. Dr. Jan Benda}{}{jan.benda@uni-tuebingen.de}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\input{../../exercisestitle}
|
||||||
|
|
||||||
|
\begin{questions}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\question \qt{Read chapter 7 of the script on ``resampling methods''!}\vspace{-3ex}
|
||||||
|
|
||||||
|
\question \qt{Bootstrap the standard error of the mean}
|
||||||
|
We want to compute the standard error of the mean of a data set by
|
||||||
|
means of the bootstrap method and compare the result with the formula
|
||||||
|
``standard deviation divided by the square-root of $n$''.
|
||||||
|
\begin{parts}
|
||||||
|
\part Download the file \code{thymusglandweights.dat} from Ilias.
|
||||||
|
This is a data set of the weights of the thymus glands of 14-day old chicken embryos
|
||||||
|
measured in milligram.
|
||||||
|
\part Load the data into Matlab (\code{load} function).
|
||||||
|
\part Compute histogram, mean, and standard error of the mean of the first 80 data points.
|
||||||
|
\part Compute the standard error of the mean of the first 80 data
|
||||||
|
points by bootstrapping the data 500 times. Write a function that
|
||||||
|
bootstraps the standard error of the mean of a given data set. The
|
||||||
|
function should also return a vector with the bootstrapped means.
|
||||||
|
\part Compute the 95\,\% confidence interval for the mean from the
|
||||||
|
bootstrap distribution (\code{quantile()} function) --- the
|
||||||
|
interval that contains the true mean with 95\,\% probability.
|
||||||
|
\part Use the whole data set and the bootstrap method for computing
|
||||||
|
the dependence of the standard error of the mean from the sample
|
||||||
|
size $n$.
|
||||||
|
\part Compare your result with the formula for the standard error
|
||||||
|
$\sigma/\sqrt{n}$.
|
||||||
|
\end{parts}
|
||||||
|
\begin{solution}
|
||||||
|
\lstinputlisting{bootstrapmean.m}
|
||||||
|
\lstinputlisting{bootstraptymus.m}
|
||||||
|
\includegraphics[width=0.5\textwidth]{bootstraptymus-datahist}
|
||||||
|
\includegraphics[width=0.5\textwidth]{bootstraptymus-meanhist}
|
||||||
|
\includegraphics[width=0.5\textwidth]{bootstraptymus-samples}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
|
||||||
|
\question \qt{Student t-distribution}
|
||||||
|
The distribution of Student's t, $t=\bar x/(\sigma_x/\sqrt{n})$, the
|
||||||
|
estimated mean $\bar x$ of a data set of size $n$ divided by the
|
||||||
|
estimated standard error of the mean $\sigma_x/\sqrt{n}$, where
|
||||||
|
$\sigma_x$ is the estimated standard deviation, is not a normal
|
||||||
|
distribution but a Student-t distribution. We want to compute the
|
||||||
|
Student-t distribution and compare it with the normal distribution.
|
||||||
|
\begin{parts}
|
||||||
|
\part Generate 100000 normally distributed random numbers.
|
||||||
|
\part Draw from these data 1000 samples of size $n=3$, 5, 10, and
|
||||||
|
50. For each sample size $n$ ...
|
||||||
|
\part ... compute the mean $\bar x$ of the samples and plot the
|
||||||
|
probability density of these means.
|
||||||
|
\part ... compare the resulting probability densities with corresponding
|
||||||
|
normal distributions.
|
||||||
|
\part ... compute Student's $t=\bar x/(\sigma_x/\sqrt{n})$ and compare its
|
||||||
|
distribution with the normal distribution with standard deviation of
|
||||||
|
one. Is $t$ normally distributed? Under which conditions is $t$
|
||||||
|
normally distributed?
|
||||||
|
\end{parts}
|
||||||
|
\newsolutionpage
|
||||||
|
\begin{solution}
|
||||||
|
\lstinputlisting{tdistribution.m}
|
||||||
|
\includegraphics[width=1\textwidth]{tdistribution-n03}\\
|
||||||
|
\includegraphics[width=1\textwidth]{tdistribution-n05}\\
|
||||||
|
\includegraphics[width=1\textwidth]{tdistribution-n10}\\
|
||||||
|
\includegraphics[width=1\textwidth]{tdistribution-n50}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\end{questions}
|
||||||
|
|
||||||
|
\end{document}
|
Reference in New Issue
Block a user