assignment for vector strength projec
This commit is contained in:
parent
e030d42c6c
commit
42acd8f2af
10
projects/project_vector_strength/Makefile
Normal file
10
projects/project_vector_strength/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
latex:
|
||||
pdflatex *.tex > /dev/null
|
||||
pdflatex *.tex > /dev/null
|
||||
|
||||
clean:
|
||||
rm -rf *.log *.aux *.zip *.out auto
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat
|
66
projects/project_vector_strength/vector_strenght.tex
Executable file
66
projects/project_vector_strength/vector_strenght.tex
Executable file
@ -0,0 +1,66 @@
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{headandfoot}
|
||||
\runningheadrule
|
||||
\firstpageheadrule
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
||||
%\printanswers
|
||||
%\shadedsolutions
|
||||
|
||||
|
||||
\begin{document}
|
||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\sffamily
|
||||
% \begin{flushright}
|
||||
% \gradetable[h][questions]
|
||||
% \end{flushright}
|
||||
|
||||
\begin{center}
|
||||
\input{../disclaimer.tex}
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section*{Quantifying the coupling of action potentials to the EOD.}
|
||||
P-unit electrorecptors are driven by the fish's self-generated field,
|
||||
the EOD. In this project you have to quantify the strength of this
|
||||
coulpling using the \textbf{vector strength}:
|
||||
\begin{equation}
|
||||
VS = \sqrt{\left(\frac{1}{n}\sum_{i=1}^{n}cos
|
||||
\alpha_i\right)^2 + \left(\frac{1}{n}\sum_{i = 1}^{n} sin \alpha_i
|
||||
\right)^2},
|
||||
\end{equation}
|
||||
with $n$ the number of spikes and $\alpha_i$ the timing of the each
|
||||
spike expressed as the phase relative to the EOD. The vector strength
|
||||
varies between $0$ and $1$ for no phase locking to perfect phase
|
||||
locking, respectively.
|
||||
|
||||
\begin{questions}
|
||||
\question In the accompanying datasets you find recrordings of the
|
||||
``baseline'' activity of P-unit electrorecptors of different weakly
|
||||
electric fish of the species \textit{Apteronotus leptorhynchus}.
|
||||
The files further contain respective recordings of the \textit{eod},
|
||||
i.e. the fish's field.
|
||||
\begin{parts}
|
||||
\part Plot an average of the single EOD cylces of each fish
|
||||
together with an respective PSTH.
|
||||
\part Implement a function that estimates the vector strength
|
||||
between the \textit{eod} and the spikes.
|
||||
\part Create a polar plot that shows the timing of the spikes
|
||||
relatve to the EOD.
|
||||
\part Analyze the baseline responses of each fish and extract
|
||||
measures from them as you have done in week 3. Plot the results
|
||||
appropriately.
|
||||
\end{parts}
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
Reference in New Issue
Block a user