Merge branch 'master' of raven:scientificComputing
This commit is contained in:
commit
3e2ca6377f
@ -8,8 +8,8 @@
|
||||
\vspace{1ex}
|
||||
|
||||
The {\bf code} and the {\bf presentation} should be uploaded to
|
||||
ILIAS at latest on Thursday, November 6th, 12:00h.
|
||||
The presentations start on Thursday 13:00h. Please hand in
|
||||
ILIAS at latest on Thursday, November 6th, 10:00h.
|
||||
The presentations start on Thursday 11:00h. Please hand in
|
||||
your presentation as a pdf file. Bundle everything into a
|
||||
{\em single} zip-file.
|
||||
|
||||
@ -26,7 +26,7 @@
|
||||
variable names).
|
||||
|
||||
\vspace{1ex} \textbf{Please write your name and matriculation
|
||||
number as a comment at the top of a script called \texttt{main.m}!}
|
||||
number as a comment at the top of a script called \texttt{main.m}.}
|
||||
The \texttt{main.m} script then should call all your scripts.
|
||||
|
||||
\vspace{1ex}
|
||||
|
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Grewe}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -30,8 +30,8 @@
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section*{Estimating the time-constant of adaptation.}
|
||||
Stimulating a neuron with a constant stimulus for an extended time
|
||||
\section*{Estimating the adaptation time-constant.}
|
||||
Stimulating a neuron with a constant stimulus for an extended period of time
|
||||
often leads to a strong initial response that relaxes over time. This
|
||||
process is called adaptation and is ubiquitous. Your task here is to
|
||||
estimate the time-constant of the firing-rate adaptation in P-unit
|
||||
@ -41,8 +41,8 @@ electroreceptors of the weakly electric fish \textit{Apteronotus
|
||||
\begin{questions}
|
||||
\question In the accompanying datasets you find the
|
||||
\textit{spike\_times} of an P-unit electrorecptor to a stimulus of a
|
||||
certain intensity, i.e. the \textit{contrast}. The contrast is also
|
||||
part of the file name itself.
|
||||
certain intensity, i.e. the \textit{contrast} which is also stored
|
||||
in the file.
|
||||
\begin{parts}
|
||||
\part Estimate for each stimulus intensity the
|
||||
PSTH and plot it. You will see that there are three parts. (i)
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Fabian Sinz}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -46,10 +46,12 @@
|
||||
$\sin(2\pi j\omega_0\cdot t + \varphi_j )$ are called {\em
|
||||
harmonic components}. The variables $\varphi_j$ are called {\em
|
||||
phases}. For the beginning choose $n=3$.
|
||||
\part Play around with $n$ and see how the fit changes. Plot the
|
||||
fits and the original curve for different choices of $n$. If you
|
||||
want you can also play the different fits and the original as
|
||||
sound.
|
||||
\part Try different choices of $n$ and see how the fit
|
||||
changes. Plot the fits and the original curve for different
|
||||
choices of $n$. Also plot the fitting error as a function of
|
||||
$n$.
|
||||
\part (optional) If you want you can also play the different fits
|
||||
and the original as sound.
|
||||
|
||||
\end{parts}
|
||||
\end{questions}
|
||||
|
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Grewe}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -31,10 +31,10 @@
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section*{Analysis of eye trajectories.}
|
||||
In this project you will analyse eye-tracking data provided by the
|
||||
Mallot-Group. In this task the subject had to memorize the positions
|
||||
of targets that can be only learned with active gaze shifts. The eye
|
||||
movements during training and test are recorded.
|
||||
In this project you will analyse eye-tracking data (courtesy of the
|
||||
Mallot department). In this task the subject had to memorize the
|
||||
positions of targets that can be only learned with active gaze
|
||||
shifts. The eye movements during training and test are recorded.
|
||||
|
||||
\begin{questions}
|
||||
\question In the accompanying dataset you find six variables. (i)
|
||||
@ -48,15 +48,15 @@ movements during training and test are recorded.
|
||||
the same marker belong to the same trial.
|
||||
\begin{parts}
|
||||
\part Cut the data in chunks belonging to the same trial.
|
||||
\part Characterize the eye movements statistically; eye
|
||||
velocity, accelerations.
|
||||
\part Characterize the eye movements statistically, e.g. with eye
|
||||
speed and/or accelerations.
|
||||
\part Detect and correct the eye traces for instances in which the
|
||||
eye was not correctly detected. Interpolate linearily in these sections.
|
||||
\part Create a 'heatmap' plot that shows the eye trajectories
|
||||
for one or two (nice) trials.
|
||||
\part Use the \verb+kmeans+ clustering function to
|
||||
discriminate different types of eye-movements. Try clustering
|
||||
using eye velocitiy and acceleration.
|
||||
identify fixation points. Manually select a good number of cluster
|
||||
centroids.
|
||||
\end{parts}
|
||||
\end{questions}
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Benda}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -31,7 +31,7 @@
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=10pt,
|
||||
% aboveskip=11pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
@ -63,19 +63,18 @@
|
||||
fano factor (the ratio between the variance and the mean of the
|
||||
spike counts)?
|
||||
|
||||
\begin{parts}
|
||||
\part The neuron is implemented in the file \texttt{lifboltzmanspikes.m}.
|
||||
The neuron is implemented in the file \texttt{lifboltzmanspikes.m}.
|
||||
Call it with the following parameters:
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
Dnoise = 1.0;
|
||||
imax = 25.0;
|
||||
ithresh = 10.0;
|
||||
slope=0.2;
|
||||
input = 10.0;
|
||||
|
||||
spikes = lifboltzmanspikes( trials, input, tmax, Dnoise, imax, ithresh, slope );
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
Dnoise = 1.0;
|
||||
imax = 25.0;
|
||||
ithresh = 10.0;
|
||||
slope=0.2;
|
||||
input = 10.0;
|
||||
|
||||
spikes = lifboltzmanspikes( trials, input, tmax, Dnoise, imax, ithresh, slope );
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
|
||||
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
|
||||
@ -83,6 +82,9 @@
|
||||
|
||||
For the two inputs use $I_1=10$ and $I_2=I_1 + 1$.
|
||||
|
||||
|
||||
\begin{parts}
|
||||
\part
|
||||
First, show two raster plots for the responses to the two differrent stimuli.
|
||||
|
||||
\part Measure the tuning curve of the neuron with respect to the input. That is,
|
||||
@ -99,15 +101,14 @@
|
||||
the two stimuli can be distinguished based on the spike
|
||||
counts. Plot the dependence of this measure as a function of the observation time $W$.
|
||||
|
||||
For which slopes can the two stimuli perfectly discriminated?
|
||||
For which slopes can the two stimuli be well discriminated?
|
||||
|
||||
Hint: A possible readout is to set a threshold $n_{thresh}$ for
|
||||
the observed spike count. Any response smaller than the threshold
|
||||
assumes that the stimulus was $I_1$, any response larger than the
|
||||
threshold assumes that the stimulus was $I_2$. What is the
|
||||
probability that the stimulus was indeed $I_1$ or $I_2$,
|
||||
respectively? Find the threshold $n_{thresh}$ that
|
||||
results in the best discrimination performance.
|
||||
\underline{Hint:} A possible readout is to set a threshold
|
||||
$n_{thresh}$ for the observed spike count. Any response smaller
|
||||
than the threshold assumes that the stimulus was $I_1$, any
|
||||
response larger than the threshold assumes that the stimulus was
|
||||
$I_2$. Find the threshold $n_{thresh}$ that results in the best
|
||||
discrimination performance.
|
||||
|
||||
\part Also plot the Fano factor as a function of the slope. How is it related to the discriminability?
|
||||
|
||||
|
BIN
projects/project_fano_test/fano.mat
Normal file
BIN
projects/project_fano_test/fano.mat
Normal file
Binary file not shown.
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Fabian Sinz}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -38,26 +38,17 @@
|
||||
$\mu$. It is a common measure in neural coding because a Poisson
|
||||
process---for which each spike is independent of every other---has a
|
||||
Fano factor of one.
|
||||
|
||||
The table contains spike counts from a neuron measured in twelve
|
||||
trials.
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{cccc}
|
||||
\multicolumn{4}{c}{\bf number of spikes} \\ \hline\\
|
||||
36 & 28 & 38 & 35\\
|
||||
32 & 30 & 35 & 29\\
|
||||
29 & 24 & 26 & 34
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
The accompanying file contains two vectors with spike counts from
|
||||
two neurons each measured in a time window of 1s.
|
||||
|
||||
\begin{parts}
|
||||
\part Plot the spike counts of both neurons appropriately.
|
||||
\part Use {\em Eden, U. T., \& Kramer, M. (2010). Drawing
|
||||
inferences from Fano factor calculations. Journal of
|
||||
neuroscience methods, 190(1), 149--152} to construct a test that
|
||||
uses the Fano factor as test statistic and tests against the Null
|
||||
hypothesis that the spike counts come from a Poisson process.
|
||||
\part Plot the spike counts appropriately.
|
||||
\part Implement the test and use it on the data above.
|
||||
\end{parts}
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Benda}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -31,7 +31,7 @@
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=10pt,
|
||||
% aboveskip=11pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
@ -62,32 +62,33 @@
|
||||
duration $W$ of the observation time? How is this related to the fano factor
|
||||
(the ratio between the variance and the mean of the spike counts)?
|
||||
|
||||
\begin{parts}
|
||||
\part The neuron is implemented in the file \texttt{lifadaptspikes.m}.
|
||||
The neuron is implemented in the file \texttt{lifadaptspikes.m}.
|
||||
Call it with the following parameters:
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 65.0;
|
||||
Dnoise = 0.1;
|
||||
adapttau = 0.2;
|
||||
adaptincr = 0.5;
|
||||
|
||||
spikes = lifadaptspikes( trials, input, tmax, Dnoise, adapttau, adaptincr );
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 65.0;
|
||||
Dnoise = 0.1;
|
||||
adapttau = 0.2;
|
||||
adaptincr = 0.5;
|
||||
|
||||
spikes = lifadaptspikes( trials, input, tmax, Dnoise, adapttau, adaptincr );
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
|
||||
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
|
||||
|
||||
For the two inputs $I_1$ and $I_2$ use
|
||||
\begin{lstlisting}
|
||||
input = 65.0; % I_1
|
||||
input = 75.0; % I_2
|
||||
input = 65.0; % I_1
|
||||
input = 75.0; % I_2
|
||||
\end{lstlisting}
|
||||
|
||||
Show two raster plots for the responses to the two differrent stimuli.
|
||||
\begin{parts}
|
||||
\part
|
||||
Show two raster plots for the responses to the two different stimuli.
|
||||
|
||||
\part Generate histograms of the spike counts within $W$ of the
|
||||
responses to the two differrent stimuli. How do they depend on the observation time $W$
|
||||
responses to the two different stimuli. How do they depend on the observation time $W$
|
||||
(use values between 1\,ms and 1\,s)?
|
||||
|
||||
\part Think about a measure based on the spike count histograms that quantifies how well
|
||||
@ -96,12 +97,11 @@
|
||||
|
||||
For which observation times can the two stimuli perfectly discriminated?
|
||||
|
||||
Hint: A possible readout is to set a threshold $n_{thresh}$ for
|
||||
the observed spike count. Any response smaller than the threshold
|
||||
assumes that the stimulus was $I_1$, any response larger than the
|
||||
threshold assumes that the stimulus was $I_2$. What is the
|
||||
probability that the stimulus was indeed $I_1$ or $I_2$,
|
||||
respectively? For a given $W$ find the threshold $n_{thresh}$ that
|
||||
\underline{Hint:} A possible readout is to set a threshold
|
||||
$n_{thresh}$ for the observed spike count. Any response smaller
|
||||
than the threshold assumes that the stimulus was $I_1$, any
|
||||
response larger than the threshold assumes that the stimulus was
|
||||
$I_2$. For a given $W$ find the threshold $n_{thresh}$ that
|
||||
results in the best discrimination performance.
|
||||
|
||||
\part Also plot the Fano factor as a function of $W$. How is it related to the discriminability?
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Benda}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -31,7 +31,7 @@
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=10pt,
|
||||
% aboveskip=11pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
@ -59,25 +59,25 @@
|
||||
Explore the dependence of interspike interval correlations on the firing rate,
|
||||
adaptation time constant and noise level.
|
||||
|
||||
\begin{parts}
|
||||
\part The neuron is a neuron with an adaptation current.
|
||||
The neuron is a neuron with an adaptation current.
|
||||
It is implemented in the file \texttt{lifadaptspikes.m}. Call it
|
||||
with the following parameters:
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 10.0; % the input I
|
||||
Dnoise = 1e-2; % noise strength
|
||||
adapttau = 0.1; % adaptation time constant in seconds
|
||||
adaptincr = 0.5; % adaptation strength
|
||||
|
||||
spikes = lifadaptspikes( trials, input, tmax, Dnoise, adapttau, adaptincr );
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 10.0; % the input I
|
||||
Dnoise = 1e-2; % noise strength
|
||||
adapttau = 0.1; % adaptation time constant in seconds
|
||||
adaptincr = 0.5; % adaptation strength
|
||||
|
||||
spikes = lifadaptspikes( trials, input, tmax, Dnoise, adapttau, adaptincr );
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
|
||||
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
|
||||
The input is set via the \texttt{input} variable, the noise strength via \texttt{Dnoise},
|
||||
and the adaptation time constant via \texttt{adapttau}.
|
||||
|
||||
\begin{parts}
|
||||
\part Measure the intensity-response curve of the neuron, that is the mean firing rate
|
||||
as a function of the input for a range of inputs from 0 to 120.
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Benda}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -31,7 +31,7 @@
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=10pt,
|
||||
% aboveskip=11pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
@ -72,7 +72,8 @@
|
||||
p_\mathrm{ig}(T) = \frac{1}{\sqrt{4 \pi D T^{3}}} \exp \left[ - \frac{(T - \mu)^{2} }{4 D T \mu^{2}} \right]
|
||||
\end{equation}
|
||||
where $\mu$ is the mean interspike interval and
|
||||
$D=\textrm{var}(T)/(2\mu^3)$ is the so called diffusion coefficient.
|
||||
% $D=\textrm{var}(T)/(2\mu^3)$
|
||||
$D$ is the so called diffusion coefficient.
|
||||
|
||||
The third one was derived for neurons driven with colored noise:
|
||||
\begin{equation}\label{pcn}
|
||||
@ -91,35 +92,34 @@
|
||||
\end{equation}
|
||||
with $\delta=\mu/\tau$.
|
||||
|
||||
\begin{parts}
|
||||
\part The two neurons are implemented in the files \texttt{pifouspikes.m}
|
||||
The two neurons are implemented in the files \texttt{pifouspikes.m}
|
||||
and \texttt{lifouspikes.m}.
|
||||
Call them with the following parameters:
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 10.0; % the input I
|
||||
Dnoise = 1.0; % noise strength
|
||||
outau = 1.0; % correlation time of the noise in seconds
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 10.0; % the input I
|
||||
Dnoise = 1.0; % noise strength
|
||||
outau = 1.0; % correlation time of the noise in seconds
|
||||
|
||||
spikes = pifouspikes( trials, input, tmax, Dnoise, outau );
|
||||
spikes = pifouspikes( trials, input, tmax, Dnoise, outau );
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
|
||||
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
|
||||
The input is set via the \texttt{input} variable.
|
||||
|
||||
\part Find for both model neurons the inputs $I_i$ required to make the fire with a mean rate
|
||||
of 10, 20, 50, and 100\,Hz.
|
||||
\begin{parts}
|
||||
\part For both model neurons find the inputs $I_i$ required to
|
||||
make them fire with a mean rate of 10, 20, 50, and 100\,Hz.
|
||||
|
||||
\part Compute interspike interval distributions of the two model neurons for these inputs $I_i$.
|
||||
|
||||
\part Compare the interspike interval distributions with the exponential
|
||||
distribution eq.~(\ref{exppdf}) and the inverse Gaussian
|
||||
eq.~(\ref{invgauss}) by measuring their parameters from the
|
||||
interspike intervals. How well do theu describe the real
|
||||
interspike intervals. How well do they describe the real
|
||||
distributions for the different conditions?
|
||||
|
||||
\part Also fit eq.~(\ref{pcn}) to the data. Here you need to apply a non-linear fit algorithm.
|
||||
\part Also fit eq.~(\ref{pcn}) to the data using maximum (log)-likelihood.
|
||||
|
||||
How well does this function describe the data?
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Fabian Sinz}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -51,8 +51,8 @@
|
||||
\log_2\frac{P(x,y)}{P(x)P(y)}$$ that the answers provide about the
|
||||
actually presented object.
|
||||
\part What is the maximally achievable mutual information (try to
|
||||
find out by generating your own dataset; the situation in which
|
||||
the information is maximal is pretty straightforward)?
|
||||
find out by generating your own dataset which naturally should
|
||||
yield maximal information)?
|
||||
\part Use bootstrapping to compute the $95\%$ confidence interval
|
||||
for the mutual information estimate in that dataset.
|
||||
\end{parts}
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Benda}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -31,7 +31,7 @@
|
||||
% captionpos=t,
|
||||
xleftmargin=2em,
|
||||
xrightmargin=1em,
|
||||
% aboveskip=10pt,
|
||||
% aboveskip=11pt,
|
||||
%title=\lstname,
|
||||
% title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
|
||||
}
|
||||
@ -60,21 +60,21 @@
|
||||
as a function of the input $I$. How does this depend on the level of
|
||||
the intrinsic noise of the neuron?
|
||||
|
||||
\begin{parts}
|
||||
\part The neuron is implemented in the file \texttt{lifspikes.m}.
|
||||
The neuron is implemented in the file \texttt{lifspikes.m}.
|
||||
Call it with the following parameters:
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 10.0; % the input I
|
||||
Dnoise = 1.0; % noise strength
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 10.0; % the input I
|
||||
Dnoise = 1.0; % noise strength
|
||||
|
||||
spikes = lifspikes( trials, input, tmax, Dnoise );
|
||||
spikes = lifspikes( trials, input, tmax, Dnoise );
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials} elements, each being a vector
|
||||
of spike times (in seconds) computed for a duration of \texttt{tmax} seconds.
|
||||
The input is set via the \texttt{input} variable, the noise strength via \texttt{Dnoise}.
|
||||
|
||||
\begin{parts}
|
||||
\part First set the noise \texttt{Dnoise=0} (no noise). Compute and plot the firing rate
|
||||
as a function of the input for inputs ranging from 0 to 20.
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Fabian Sinz}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -33,14 +33,14 @@
|
||||
|
||||
\begin{questions}
|
||||
\question The accompanying data {\tt Neuron22.mat} stores a single
|
||||
data matrix {\tt data\_unsorted} containing spike from a neuron in
|
||||
macaque prefrontal cortex. The task of the monkey was to
|
||||
discriminate point sets with 1 to 4 points. The first column
|
||||
contains the number of points shown plus one. The remaining columns
|
||||
contain the spike response across 1300ms. During the first 500ms the
|
||||
monkey was fixating a target. The next 800ms the stimulus was
|
||||
shown. This was followed by 1000ms delay time before the monkey was
|
||||
allowed to respond.
|
||||
data matrix {\tt data\_unsorted} containing spikes from a neuron in
|
||||
macaque prefrontal cortex (data courtesy of Prof. Nieder). The task
|
||||
of the monkey was to discriminate point-sets with 1 to 4 points. The
|
||||
first column contains the number of points shown plus one. The
|
||||
remaining columns contain the spike response across 1300ms. During
|
||||
the first 500ms the monkey was fixating a target. The next 800ms the
|
||||
stimulus was shown. This was followed by 1000ms delay time before
|
||||
the monkey was allowed to respond.
|
||||
|
||||
\begin{parts}
|
||||
\part Plot the data in an appropriate way.
|
||||
|
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Grewe}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -39,25 +39,25 @@ of the stimulus \textbf{I}ntensity.
|
||||
\question In the accompanying datasets you find the
|
||||
\textit{spike\_times} of an P-unit electrorecptor of the weakly
|
||||
electric fish \textit{Apteronotus leptorhynchus} to a stimulus of a
|
||||
certain intensity, i.e. the \textit{contrast}. The contrast is also
|
||||
part of the file name itself.
|
||||
certain intensity, i.e. the \textit{contrast}.
|
||||
\begin{parts}
|
||||
\part Estimate for each stimulus intensity the average response
|
||||
\part For each stimulus intensity estimate the average response
|
||||
(PSTH) and plot it. You will see that there are three parts. (i)
|
||||
The first 200 ms is the baseline (no stimulus) activity. (ii) During
|
||||
the next 1000 ms the stimulus was switched on. (iii) After stimulus
|
||||
offset the neuronal activity was recorded for further 825 ms.
|
||||
The first 200 ms is the baseline (no stimulus) activity. (ii)
|
||||
During the next 1000 ms the stimulus was switched on. (iii) After
|
||||
stimulus offset the neuronal activity was recorded for further 825
|
||||
ms.
|
||||
\part Extract the neuron's activity in the first 50 ms after stimulus onset
|
||||
and plot it against the stimulus intensity, respectively the
|
||||
contrast, in an appropriate way.
|
||||
\part Fit a Boltzmann function to the FI-curve. The Boltzmann function
|
||||
is defined as:
|
||||
\begin{equation}
|
||||
y=\frac{\alpha-\beta}{1+e^{(x-x_0)/dx}}+\beta,
|
||||
y=\frac{\alpha-\beta}{1+e^{(x-x_0)/\Delta x}}+\beta,
|
||||
\end{equation}
|
||||
where $\alpha$ is the starting firing rate, $\beta$ the saturation
|
||||
firing rate, $x$ the current stimulus intensity, $x_0$ starting
|
||||
stimulus intensity, and $dx$ a measure of the slope.
|
||||
stimulus intensity, and $\Delta x$ a measure of the slope.
|
||||
\part Plot the fit into the data.
|
||||
\end{parts}
|
||||
\end{questions}
|
||||
|
11
projects/project_pca_natural_img/Makefile
Normal file
11
projects/project_pca_natural_img/Makefile
Normal file
@ -0,0 +1,11 @@
|
||||
latex:
|
||||
pdflatex *.tex > /dev/null
|
||||
pdflatex *.tex > /dev/null
|
||||
pdflatex *.tex > /dev/null
|
||||
|
||||
clean:
|
||||
rm -rf *.log *.aux *.zip *.out auto *.bbl *.blg
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.jpg
|
BIN
projects/project_pca_natural_img/natimg.jpg
Normal file
BIN
projects/project_pca_natural_img/natimg.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 915 KiB |
61
projects/project_pca_natural_img/pca_natural_images.tex
Executable file
61
projects/project_pca_natural_img/pca_natural_images.tex
Executable file
@ -0,0 +1,61 @@
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{headandfoot}
|
||||
\runningheadrule
|
||||
\firstpageheadrule
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Fabian Sinz}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
||||
%\printanswers
|
||||
%\shadedsolutions
|
||||
|
||||
|
||||
\begin{document}
|
||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\sffamily
|
||||
% \begin{flushright}
|
||||
% \gradetable[h][questions]
|
||||
% \end{flushright}
|
||||
|
||||
\begin{center}
|
||||
\input{../disclaimer.tex}
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
In you zip file you find a natural image called {\tt natimg.jpg}.
|
||||
\begin{questions}
|
||||
|
||||
\question Load the image and extract all pixels as three dimensional
|
||||
vectors (red, green, and blue channel).
|
||||
|
||||
\question Perform a principal component analysis on these
|
||||
three-dimensional vectors.
|
||||
|
||||
\question Try to find an interpretation of the principal components
|
||||
you find in terms of colors. Find a good way to visualize this.
|
||||
|
||||
\question What could be the biological significance of that (\cite{BG} can
|
||||
give you a clue)?
|
||||
|
||||
\end{questions}
|
||||
|
||||
\begin{thebibliography}{1}
|
||||
\bibitem{BG} Buchsbaum, G., \& Gottschalk, A. (1983). Trichromacy,
|
||||
opponent colours coding and optimum colour information transmission
|
||||
in the retina. Proceedings of the Royal Society of London. Series B,
|
||||
Containing Papers of a Biological Character. Royal Society (Great
|
||||
Britain), 220(1218), 89–113.
|
||||
\end{thebibliography}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Fabian Sinz}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Fabian Sinz}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -48,7 +48,7 @@
|
||||
appropriate size and compute the average Fourier amplitude
|
||||
spectrum of the spike response. Plot the result in an appropriate
|
||||
way.
|
||||
\part Determine whether you can find peas in the amplitude
|
||||
\part Determine whether you can find peak in the amplitude
|
||||
spectrum at the fundamental frequency of the EOD and/or the
|
||||
stimulus and/or their difference.
|
||||
\end{parts}
|
||||
|
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Grewe}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -47,17 +47,17 @@ of the stimulus \textbf{I}ntensity.
|
||||
The first 200 ms is the baseline (no stimulus) activity. (ii) During
|
||||
the next 1000 ms the stimulus was switched on. (iii) After stimulus
|
||||
offset the neuronal activity was recorded for further 825 ms.
|
||||
\part Extract the neuron's activity in the first 50 ms after stimulus onset
|
||||
and plot it against the stimulus intensity, respectively the
|
||||
contrast, in an appropriate way.
|
||||
\part Extract the neuron's activity in the last 200 ms before
|
||||
stimulus offset and plot it against the stimulus intensity or the
|
||||
contrast, respectively.
|
||||
\part Fit a Boltzmann function to the FI-curve. The Boltzmann function
|
||||
is defined as:
|
||||
\begin{equation}
|
||||
y=\frac{\alpha-\beta}{1+e^{(x-x_0)/dx}}+\beta,
|
||||
y=\frac{\alpha-\beta}{1+e^{(x-x_0)/\Delta x}}+\beta,
|
||||
\end{equation}
|
||||
where $\alpha$ is the starting firing rate, $\beta$ the saturation
|
||||
firing rate, $x$ the current stimulus intensity, $x_0$ starting
|
||||
stimulus intensity, and $dx$ a measure of the slope.
|
||||
stimulus intensity, and $\Delta x$ a measure of the slope.
|
||||
\end{parts}
|
||||
\end{questions}
|
||||
|
||||
|
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Grewe}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -49,12 +49,13 @@ reconstruct the stimulus a neuron has been stimulated with.
|
||||
\end{equation}
|
||||
with $N$ the number of data points, $x_i$ the current value and
|
||||
$\bar{x}$, the average of all $x$.
|
||||
\part Analyze the robustness of the reconstruction. Estimate
|
||||
\part Analyze the robustness of the reconstruction: Estimate
|
||||
the STA with less and less data and estimate the reconstruction
|
||||
error.
|
||||
\part Plot the reconstruction error as a function of the data
|
||||
amount used to estimate the STA.
|
||||
\part Do the same for the pyramidal neuron, what do you observe?
|
||||
\part Repeat the above steps for the pyramidal neuron, what do you
|
||||
observe?
|
||||
\end{parts}
|
||||
\end{questions}
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[addpoints,10pt]{exam}
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
@ -9,7 +9,7 @@
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\firstpagefooter{}{}{{\bf Supervisor:} Jan Grewe}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
@ -35,8 +35,8 @@ P-unit electrorecptors are driven by the fish's self-generated field,
|
||||
the EOD. In this project you have to quantify the strength of this
|
||||
coulpling using the \textbf{vector strength}:
|
||||
\begin{equation}
|
||||
VS = \sqrt{\left(\frac{1}{n}\sum_{i=1}^{n}cos
|
||||
\alpha_i\right)^2 + \left(\frac{1}{n}\sum_{i = 1}^{n} sin \alpha_i
|
||||
VS = \sqrt{\left(\frac{1}{n}\sum_{i=1}^{n}\cos
|
||||
\alpha_i\right)^2 + \left(\frac{1}{n}\sum_{i = 1}^{n} \sin \alpha_i
|
||||
\right)^2},
|
||||
\end{equation}
|
||||
with $n$ the number of spikes and $\alpha_i$ the timing of the each
|
||||
|
Reference in New Issue
Block a user