changed title
24
statistics/Makefile
Normal file
@ -0,0 +1,24 @@
|
||||
DOTSOURCES = $(wildcard figs/*.dot)
|
||||
|
||||
|
||||
|
||||
all: $(DOTSOURCES:dot=pdf)
|
||||
python figs/generate.py
|
||||
python figs/generate03.py
|
||||
python figs/generateTPlots.py
|
||||
pdflatex talk*.tex
|
||||
pdflatex talk*.tex
|
||||
pdflatex talk*.tex
|
||||
|
||||
|
||||
figs/prob%.pdf : figs/prob%.dot
|
||||
dot -Tpdf -o $@ $<
|
||||
|
||||
figs/test%.pdf : figs/test%.dot
|
||||
dot -Tpdf -o $@ $<
|
||||
|
||||
figs/fig%.pdf : figs/fig%.dot
|
||||
dot -Tpdf -o $@ $<
|
||||
|
||||
clean:
|
||||
rm -rf *.dvi *.pdf *.aux *.out *.log auto *.nav *.snm *.toc *.vrb
|
1
statistics/beamercolorthemetuebingen.sty
Symbolic link
@ -0,0 +1 @@
|
||||
../latex/beamercolorthemetuebingen.sty
|
218
statistics/certificate.lyx
Normal file
@ -0,0 +1,218 @@
|
||||
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 413
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass g-brief2
|
||||
\begin_preamble
|
||||
\fenstermarken % prints address window marks
|
||||
\faltmarken % prints folding marks
|
||||
%\lochermarke % prints puncher marks
|
||||
\trennlinien % prints striplines
|
||||
%\unserzeichen % prints "our ref" instead of "my ref"
|
||||
\end_preamble
|
||||
\use_default_options false
|
||||
\maintain_unincluded_children false
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman palatino
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf false
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize 12
|
||||
\spacing onehalf
|
||||
\use_hyperref false
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_amsmath 1
|
||||
\use_esint 1
|
||||
\use_mhchem 1
|
||||
\use_mathdots 1
|
||||
\cite_engine basic
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\use_refstyle 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\secnumdepth 4
|
||||
\tocdepth 4
|
||||
\paragraph_separation skip
|
||||
\defskip medskip
|
||||
\quotes_language english
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle empty
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Note also the document preamble settings.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout NameRowA
|
||||
Dr.
|
||||
rer.
|
||||
nat.
|
||||
Fabian Sinz
|
||||
\end_layout
|
||||
|
||||
\begin_layout NameRowB
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout NameRowC
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout NameRowD
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout NameRowE
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout NameRowF
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout NameRowG
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout AddressRowA
|
||||
University Tübingen
|
||||
\end_layout
|
||||
|
||||
\begin_layout AddressRowB
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout AddressRowC
|
||||
Auf der Morgenstelle 28
|
||||
\end_layout
|
||||
|
||||
\begin_layout AddressRowD
|
||||
72076 Tübingen
|
||||
\end_layout
|
||||
|
||||
\begin_layout InternetRowA
|
||||
http:/
|
||||
\begin_inset Formula $\!$
|
||||
\end_inset
|
||||
|
||||
/www.epagoge.de
|
||||
\end_layout
|
||||
|
||||
\begin_layout InternetRowB
|
||||
fabian.sinz@epagoge.de
|
||||
\end_layout
|
||||
|
||||
\begin_layout ReturnAddress
|
||||
University Tübingen
|
||||
\begin_inset Formula $\cdot$
|
||||
\end_inset
|
||||
|
||||
Auf der Morgenstelle 28
|
||||
\begin_inset Formula $\cdot$
|
||||
\end_inset
|
||||
|
||||
72076 Tübingen
|
||||
\end_layout
|
||||
|
||||
\begin_layout Date
|
||||
\begin_inset ERT
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
|
||||
\backslash
|
||||
today
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Reference
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Opening
|
||||
To whom it may concern,
|
||||
\end_layout
|
||||
|
||||
\begin_layout Closing
|
||||
Best regards
|
||||
\end_layout
|
||||
|
||||
\begin_layout Signature
|
||||
Dr.
|
||||
Fabian Sinz
|
||||
\end_layout
|
||||
|
||||
\begin_layout Encl.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Letter
|
||||
this letter certifies that
|
||||
\emph on
|
||||
Lakshmi Channappa
|
||||
\emph default
|
||||
attended the course
|
||||
\emph on
|
||||
Statistics in a Nutshell
|
||||
\emph default
|
||||
held at the Neurochip research group at the
|
||||
\emph on
|
||||
Naturwissenschaftliches und Medizinisches Institut Reutlingen
|
||||
\emph default
|
||||
in 2013
|
||||
\emph on
|
||||
.
|
||||
|
||||
\emph default
|
||||
The course was organized in two lectures of four hours each and covered
|
||||
topics such as basics of probability theory, errorbars and confidence intervals
|
||||
, statistical tests, p-values, multiple hypothesis testing, basics of study
|
||||
design, and basics of ANOVA.
|
||||
Small calculation and programming exercises were used to clarify selected
|
||||
material.
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
123
statistics/environments.tex
Normal file
@ -0,0 +1,123 @@
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: t
|
||||
%%% End:
|
||||
\definecolor{crimson}{HTML}{DC143C}
|
||||
\definecolor{cornflowerblue}{HTML}{6495ED}
|
||||
\definecolor{dodgerblue}{HTML}{1E90FF}
|
||||
\definecolor{deepskyblue}{HTML}{00BFFF}
|
||||
\definecolor{gainsboro}{HTML}{DCDCDC}
|
||||
\definecolor{ghostwhite}{HTML}{F8F8F8}
|
||||
\definecolor{lightgray}{HTML}{D3D3D3}
|
||||
|
||||
\newenvironment<>{emphasize}[1]{%
|
||||
\begin{actionenv}#2%
|
||||
\def\insertblocktitle{#1}%
|
||||
\par%
|
||||
\mode<presentation>{%
|
||||
\setbeamercolor{block title}{fg=black,bg=orange!100}
|
||||
\setbeamercolor{block body}{fg=black,bg=cornflowerblue!70}
|
||||
% \setbeamercolor{itemize item}{fg=orange!20!black}
|
||||
% \setbeamertemplate{itemize item}[triangle]
|
||||
\setbeamerfont{block title}{series=\bfseries}
|
||||
% \setbeamerfont{block body}{family=\ttfamily}
|
||||
}%
|
||||
\usebeamertemplate{block begin}}
|
||||
{\par\usebeamertemplate{block end}\end{actionenv}}
|
||||
|
||||
\newenvironment<>{solution}[1]{%
|
||||
\begin{actionenv}#2%
|
||||
\def\insertblocktitle{#1}%
|
||||
\par%
|
||||
\mode<presentation>{%
|
||||
\setbeamercolor{block title}{fg=black,bg=dodgerblue!100}
|
||||
\setbeamercolor{block body}{fg=black,bg=lightgray!70}
|
||||
% \setbeamercolor{itemize item}{fg=orange!20!black}
|
||||
% \setbeamertemplate{itemize item}[triangle]
|
||||
\setbeamerfont{block title}{series=\bfseries}
|
||||
% \setbeamerfont{block body}{family=\ttfamily}
|
||||
}%
|
||||
\usebeamertemplate{block begin}}
|
||||
{\par\usebeamertemplate{block end}\end{actionenv}}
|
||||
|
||||
\newenvironment<>{question}[1]{%
|
||||
\begin{actionenv}#2%
|
||||
\def\insertblocktitle{#1}%
|
||||
\par%
|
||||
\mode<presentation>{%
|
||||
\setbeamercolor{block title}{fg=black,bg=dodgerblue!100}
|
||||
\setbeamercolor{block body}{fg=black,bg=lightgray!70}
|
||||
% \setbeamercolor{itemize item}{fg=orange!20!black}
|
||||
% \setbeamertemplate{itemize item}[triangle]
|
||||
\setbeamerfont{block title}{series=\bfseries}
|
||||
% \setbeamerfont{block body}{family=\ttfamily}
|
||||
}%
|
||||
\usebeamertemplate{block begin}}
|
||||
{\par\usebeamertemplate{block end}\end{actionenv}}
|
||||
|
||||
\renewenvironment<>{definition}[1]{%
|
||||
\begin{actionenv}#2%
|
||||
\def\insertblocktitle{#1}%
|
||||
\par%
|
||||
\mode<presentation>{%
|
||||
\setbeamercolor{block title}{fg=black,bg=dodgerblue!100}
|
||||
\setbeamercolor{block body}{fg=black,bg=lightgray!70}
|
||||
% \setbeamercolor{itemize item}{fg=orange!20!black}
|
||||
% \setbeamertemplate{itemize item}[triangle]
|
||||
\setbeamerfont{block title}{series=\bfseries}
|
||||
% \setbeamerfont{block body}{family=\ttfamily}
|
||||
}%
|
||||
\usebeamertemplate{block begin}}
|
||||
{\par\usebeamertemplate{block end}\end{actionenv}}
|
||||
|
||||
|
||||
\newenvironment<>{description}[1]{%
|
||||
\begin{actionenv}#2%
|
||||
\def\insertblocktitle{#1}%
|
||||
\par%
|
||||
\mode<presentation>{%
|
||||
\setbeamercolor{block title}{fg=white,bg=gray}
|
||||
\setbeamercolor{block body}{fg=black,bg=gray!30}
|
||||
% \setbeamercolor{itemize item}{fg=orange!20!black}
|
||||
% \setbeamertemplate{itemize item}[triangle]
|
||||
\setbeamerfont{block title}{family=\sffamily, series=\bfseries}
|
||||
\setbeamerfont{block body}{family=\ttfamily}
|
||||
}%
|
||||
\usebeamertemplate{block begin}}
|
||||
{\par\usebeamertemplate{block end}\end{actionenv}}
|
||||
|
||||
\newenvironment<>{task}[1]{%
|
||||
\begin{actionenv}#2%
|
||||
\def\insertblocktitle{#1}%
|
||||
\par%
|
||||
\mode<presentation>{%
|
||||
\setbeamercolor{block title}{fg=black,bg=dodgerblue!100}
|
||||
\setbeamercolor{block body}{fg=black,bg=deepskyblue!80}
|
||||
% \setbeamercolor{itemize item}{fg=orange!20!black}
|
||||
% \setbeamertemplate{itemize item}[triangle]
|
||||
\setbeamerfont{block title}{series=\bfseries}
|
||||
% \setbeamerfont{block body}{family=\ttfamily}
|
||||
}%
|
||||
\usebeamertemplate{block begin}}
|
||||
{\par\usebeamertemplate{block end}\end{actionenv}}
|
||||
|
||||
\newenvironment<>{summary}[1]{%
|
||||
\begin{actionenv}#2%
|
||||
\def\insertblocktitle{#1}%
|
||||
\par%
|
||||
\mode<presentation>{%
|
||||
\setbeamercolor{block title}{fg=black,bg=blue!40}
|
||||
\setbeamercolor{block body}{fg=black,bg=blue!20}
|
||||
% \setbeamercolor{itemize item}{fg=orange!20!black}
|
||||
% \setbeamertemplate{itemize item}[triangle]
|
||||
\setbeamerfont{block title}{series=\bfseries}
|
||||
% \setbeamerfont{block body}{family=\ttfamily}
|
||||
}%
|
||||
\usebeamertemplate{block begin}}
|
||||
{\par\usebeamertemplate{block end}\end{actionenv}}
|
||||
%%%%%%%%%%%%%%%%%%% PROGRESSBAR %%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\definecolor{pbblue}{HTML}{0A75A8}% filling color for the progress bar
|
||||
\definecolor{pbgray}{HTML}{575757}% background color for the progress bar
|
||||
\definecolor{pbgreen}{HTML}{57EE57}% green color for the progress bar
|
||||
|
BIN
statistics/figs/2012-10-29_14-55-39_181.jpg
Normal file
After Width: | Height: | Size: 546 KiB |
BIN
statistics/figs/2012-10-29_14-56-59_866.jpg
Normal file
After Width: | Height: | Size: 575 KiB |
BIN
statistics/figs/2012-10-29_14-58-18_054.jpg
Normal file
After Width: | Height: | Size: 385 KiB |
BIN
statistics/figs/2012-10-29_14-59-05_984.jpg
Normal file
After Width: | Height: | Size: 865 KiB |
BIN
statistics/figs/2012-10-29_15-04-38_517.jpg
Normal file
After Width: | Height: | Size: 425 KiB |
BIN
statistics/figs/2012-10-29_15-09-25_388.jpg
Normal file
After Width: | Height: | Size: 582 KiB |
BIN
statistics/figs/2012-10-29_16-26-05_771.jpg
Executable file
After Width: | Height: | Size: 724 KiB |
BIN
statistics/figs/2012-10-29_16-29-35_312.jpg
Executable file
After Width: | Height: | Size: 386 KiB |
BIN
statistics/figs/2012-10-29_16-41-39_523.jpg
Executable file
After Width: | Height: | Size: 461 KiB |
BIN
statistics/figs/Bernoulli.pdf
Normal file
BIN
statistics/figs/Binomial.pdf
Normal file
BIN
statistics/figs/Binomial00.pdf
Normal file
BIN
statistics/figs/Binomial01.pdf
Normal file
BIN
statistics/figs/BinomialCdf00.pdf
Normal file
BIN
statistics/figs/BinomialCdf01.pdf
Normal file
BIN
statistics/figs/BinomialExample00.pdf
Normal file
BIN
statistics/figs/Fdistribution00.pdf
Normal file
BIN
statistics/figs/Gaussian00.pdf
Normal file
BIN
statistics/figs/HE0.png
Normal file
After Width: | Height: | Size: 41 KiB |
BIN
statistics/figs/HE0Solution.png
Normal file
After Width: | Height: | Size: 43 KiB |
BIN
statistics/figs/HE1.png
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
statistics/figs/HE1Solution.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
statistics/figs/HE2.png
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
statistics/figs/HE2Solution.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
statistics/figs/HE3.png
Normal file
After Width: | Height: | Size: 50 KiB |
BIN
statistics/figs/HE3Solution.png
Normal file
After Width: | Height: | Size: 51 KiB |
BIN
statistics/figs/Joint00.pdf
Normal file
BIN
statistics/figs/Joint01.pdf
Normal file
BIN
statistics/figs/Joint02.pdf
Normal file
BIN
statistics/figs/Poisson00.pdf
Normal file
BIN
statistics/figs/Poisson01.pdf
Normal file
BIN
statistics/figs/PoissonConfidence.pdf
Normal file
BIN
statistics/figs/Posterior00.pdf
Normal file
BIN
statistics/figs/StandardErrorOrStandardDeviation.pdf
Normal file
BIN
statistics/figs/Uniform.pdf
Normal file
BIN
statistics/figs/chirpqqplot.pdf
Normal file
BIN
statistics/figs/decision00.pdf
Normal file
BIN
statistics/figs/decision01.pdf
Normal file
BIN
statistics/figs/decision02.pdf
Normal file
BIN
statistics/figs/decision03.pdf
Normal file
BIN
statistics/figs/dopamineqqplot.pdf
Normal file
BIN
statistics/figs/example01.png
Executable file
After Width: | Height: | Size: 21 KiB |
BIN
statistics/figs/example02.png
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
statistics/figs/example03.png
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
statistics/figs/example04.png
Normal file
After Width: | Height: | Size: 22 KiB |
BIN
statistics/figs/experimentalDesign00.pdf
Normal file
BIN
statistics/figs/experimentalDesign01.pdf
Normal file
15
statistics/figs/fig0.dot
Normal file
@ -0,0 +1,15 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
node [fontsize=12, shape=rectangle, style=filled];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"]
|
||||
data->nominal[label="nominal/discrete"]
|
||||
data->ordinal[label="ordinal"]
|
||||
}
|
BIN
statistics/figs/fig0.pdf
Normal file
94
statistics/figs/fig01.dot
Executable file
@ -0,0 +1,94 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.95,ranksep=0.95];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
subgraph cluster_IR {
|
||||
label = "interval/ ratio";
|
||||
bgcolor=lightblue;
|
||||
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
ttest[label="t-test"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
|
||||
signrank[label="Wilcoxon signed\nrank test"];
|
||||
|
||||
trulynotnormal->signrank[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
trulynotnormal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
twosampNN->signrank[label="paired"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
subgraph cluster_O {
|
||||
label = "ordinal";
|
||||
bgcolor=lightblue;
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
signtest[label="sign test"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
ordinal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
}
|
||||
|
||||
|
||||
subgraph cluster_ND {
|
||||
label = "nominal/discrete";
|
||||
bgcolor=lightblue;
|
||||
nd_test_type[label="1, 2, or >2 variables",color="green"];
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nd_test_type[label="nominal/discrete",color="red"];
|
||||
|
||||
|
||||
|
||||
twosampNN->signtest[label="paired"];
|
||||
twosampOrd->signtest[label="paired"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig01.pdf
Normal file
96
statistics/figs/fig02.dot
Normal file
@ -0,0 +1,96 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.95,ranksep=0.95];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
subgraph cluster_IR {
|
||||
label = "interval/ ratio";
|
||||
bgcolor=lightblue;
|
||||
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
ttest[label="t-test"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
|
||||
signrank[label="Wilcoxon signed\nrank test"];
|
||||
|
||||
trulynotnormal->signrank[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
trulynotnormal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
twosampNN->signrank[label="paired"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
subgraph cluster_O {
|
||||
label = "ordinal";
|
||||
bgcolor=lightblue;
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
signtest[label="sign test"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
ordinal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
}
|
||||
|
||||
|
||||
subgraph cluster_ND {
|
||||
label = "nominal/discrete";
|
||||
bgcolor=lightblue;
|
||||
nd_test_type[label="1, 2, or >2 variables",color="green"];
|
||||
onesampND[label="chi square for\ngoodness of fit"];
|
||||
|
||||
nd_test_type->onesampND[label="1 variable"];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nd_test_type[label="nominal/discrete",color="red"];
|
||||
|
||||
|
||||
|
||||
twosampNN->signtest[label="paired"];
|
||||
twosampOrd->signtest[label="paired"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig02.pdf
Normal file
98
statistics/figs/fig03.dot
Normal file
@ -0,0 +1,98 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.95,ranksep=0.95];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
subgraph cluster_IR {
|
||||
label = "interval/ ratio";
|
||||
bgcolor=lightblue;
|
||||
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
ttest[label="t-test"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
|
||||
signrank[label="Wilcoxon signed\nrank test"];
|
||||
|
||||
trulynotnormal->signrank[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
trulynotnormal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
twosampNN->signrank[label="paired"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
subgraph cluster_O {
|
||||
label = "ordinal";
|
||||
bgcolor=lightblue;
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
signtest[label="sign test"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
ordinal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
}
|
||||
|
||||
|
||||
subgraph cluster_ND {
|
||||
label = "nominal/discrete";
|
||||
bgcolor=lightblue;
|
||||
nd_test_type[label="1, 2, or >2 variables",color="green"];
|
||||
onesampND[label="chi square for\ngoodness of fit"];
|
||||
twosampND[label="chi square for\nindependence"];
|
||||
|
||||
nd_test_type->onesampND[label="1 variable"];
|
||||
nd_test_type->twosampND[label="2 variables"];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nd_test_type[label="nominal/discrete",color="red"];
|
||||
|
||||
|
||||
|
||||
twosampNN->signtest[label="paired"];
|
||||
twosampOrd->signtest[label="paired"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig03.pdf
Normal file
99
statistics/figs/fig04.dot
Normal file
@ -0,0 +1,99 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.95,ranksep=0.95];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
subgraph cluster_IR {
|
||||
label = "interval/ ratio";
|
||||
bgcolor=lightblue;
|
||||
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
ttest[label="t-test"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
|
||||
signrank[label="Wilcoxon signed\nrank test"];
|
||||
|
||||
trulynotnormal->signrank[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
trulynotnormal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
twosampNN->signrank[label="paired"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
subgraph cluster_O {
|
||||
label = "ordinal";
|
||||
bgcolor=lightblue;
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
signtest[label="sign test"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
ordinal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
}
|
||||
|
||||
|
||||
subgraph cluster_ND {
|
||||
label = "nominal/discrete";
|
||||
bgcolor=lightblue;
|
||||
nd_test_type[label="1, 2, or >2 variables",color="green"];
|
||||
onesampND[label="chi square for\ngoodness of fit"];
|
||||
twosampND[label="chi square for\nindependence"];
|
||||
|
||||
nd_test_type->onesampND[label="1 variable"];
|
||||
nd_test_type->onesampND[label="n variables",color="red"];
|
||||
nd_test_type->twosampND[label="2 variables"];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nd_test_type[label="nominal/discrete"];
|
||||
|
||||
|
||||
|
||||
twosampNN->signtest[label="paired"];
|
||||
twosampOrd->signtest[label="paired"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig04.pdf
Normal file
99
statistics/figs/fig05.dot
Normal file
@ -0,0 +1,99 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.95,ranksep=0.95];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
subgraph cluster_IR {
|
||||
label = "interval/ ratio";
|
||||
bgcolor=lightblue;
|
||||
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?",color="green"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
ttest[label="t-test"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
|
||||
signrank[label="Wilcoxon signed\nrank test"];
|
||||
|
||||
trulynotnormal->signrank[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
trulynotnormal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
twosampNN->signrank[label="paired"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
subgraph cluster_O {
|
||||
label = "ordinal";
|
||||
bgcolor=lightblue;
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
signtest[label="sign test"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
ordinal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
}
|
||||
|
||||
|
||||
subgraph cluster_ND {
|
||||
label = "nominal/discrete";
|
||||
bgcolor=lightblue;
|
||||
nd_test_type[label="1, 2, or >2 variables"];
|
||||
onesampND[label="chi square for\ngoodness of fit"];
|
||||
twosampND[label="chi square for\nindependence"];
|
||||
|
||||
nd_test_type->onesampND[label="1 variable"];
|
||||
nd_test_type->onesampND[label="n variables"];
|
||||
nd_test_type->twosampND[label="2 variables"];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nd_test_type[label="nominal/discrete"];
|
||||
|
||||
|
||||
|
||||
twosampNN->signtest[label="paired"];
|
||||
twosampOrd->signtest[label="paired"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig05.pdf
Normal file
101
statistics/figs/fig06.dot
Normal file
@ -0,0 +1,101 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.95,ranksep=0.95];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
subgraph cluster_IR {
|
||||
label = "interval/ ratio";
|
||||
bgcolor=lightblue;
|
||||
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?",color="green"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
ttest[label="t-test"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
|
||||
signrank[label="Wilcoxon signed\nrank test"];
|
||||
|
||||
trulynotnormal->signrank[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
ANOVA;
|
||||
normal->ANOVA[color="red"];
|
||||
|
||||
}
|
||||
|
||||
trulynotnormal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
|
||||
twosampNN->signrank[label="paired"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
subgraph cluster_O {
|
||||
label = "ordinal";
|
||||
bgcolor=lightblue;
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
signtest[label="sign test"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
ordinal->signtest[label="1 group\n(fix other\ngroup to\n one value)"];
|
||||
}
|
||||
|
||||
|
||||
subgraph cluster_ND {
|
||||
label = "nominal/discrete";
|
||||
bgcolor=lightblue;
|
||||
nd_test_type[label="1, 2, or >2 variables"];
|
||||
onesampND[label="chi square for\ngoodness of fit"];
|
||||
twosampND[label="chi square for\nindependence"];
|
||||
|
||||
nd_test_type->onesampND[label="1 variable"];
|
||||
nd_test_type->onesampND[label="n variables"];
|
||||
nd_test_type->twosampND[label="2 variables"];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nd_test_type[label="nominal/discrete"];
|
||||
|
||||
|
||||
|
||||
twosampNN->signtest[label="paired"];
|
||||
twosampOrd->signtest[label="paired"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig06.pdf
Normal file
22
statistics/figs/fig1.dot
Normal file
@ -0,0 +1,22 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
normal[label="?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
|
||||
|
||||
}
|
BIN
statistics/figs/fig1.pdf
Normal file
58
statistics/figs/fig10.dot
Normal file
@ -0,0 +1,58 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.95,ranksep=0.95];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
|
||||
ttest[label="t-test"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
signtest[label="sign test"];
|
||||
signrank[label="Wilcoxon signed\nrank test",color="lightblue"];
|
||||
twosampNN->signtest[label="paired"];
|
||||
twosampOrd->signtest[label="paired"];
|
||||
|
||||
twosampNN->signrank[label="paired"];
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig10.pdf
Normal file
81
statistics/figs/fig11.dot
Normal file
@ -0,0 +1,81 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.95,ranksep=0.95];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
subgraph cluster_IR {
|
||||
label = "interval/ ratio";
|
||||
bgcolor=lightblue;
|
||||
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
ttest[label="t-test"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
|
||||
signrank[label="Wilcoxon signed\nrank test"];
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
twosampNN->signrank[label="paired"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
subgraph cluster_O {
|
||||
label = "ordinal";
|
||||
bgcolor=lightblue;
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
signtest[label="sign test"];
|
||||
|
||||
}
|
||||
|
||||
data[label="type of data?"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
|
||||
|
||||
|
||||
twosampNN->signtest[label="paired"];
|
||||
twosampOrd->signtest[label="paired"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig11.pdf
Normal file
83
statistics/figs/fig12.dot
Normal file
@ -0,0 +1,83 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.95,ranksep=0.95];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
subgraph cluster_IR {
|
||||
label = "interval/ ratio";
|
||||
bgcolor=lightblue;
|
||||
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
ttest[label="t-test"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
|
||||
signrank[label="Wilcoxon signed\nrank test"];
|
||||
|
||||
trulynotnormal->signrank[label="1 group\n(fix other\ngroup to\n one value)",color="red"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
trulynotnormal->signtest[label="1 group\n(fix other\ngroup to\n one value)",color="red"];
|
||||
|
||||
twosampNN->signrank[label="paired"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
subgraph cluster_O {
|
||||
label = "ordinal";
|
||||
bgcolor=lightblue;
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
signtest[label="sign test"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
ordinal->signtest[label="1 group\n(fix other\ngroup to\n one value)",color="red"];
|
||||
}
|
||||
|
||||
data[label="type of data?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
|
||||
|
||||
|
||||
twosampNN->signtest[label="paired"];
|
||||
twosampOrd->signtest[label="paired"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig12.pdf
Normal file
28
statistics/figs/fig2.dot
Normal file
@ -0,0 +1,28 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
normal[label="?",color="lightblue"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
|
||||
}
|
||||
|
BIN
statistics/figs/fig2.pdf
Normal file
28
statistics/figs/fig3.dot
Normal file
@ -0,0 +1,28 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.75,ranksep=0.75];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
|
||||
}
|
||||
|
BIN
statistics/figs/fig3.pdf
Normal file
30
statistics/figs/fig4.dot
Normal file
@ -0,0 +1,30 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.75,ranksep=0.75];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
}
|
||||
|
BIN
statistics/figs/fig4.pdf
Normal file
38
statistics/figs/fig5.dot
Normal file
@ -0,0 +1,38 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.75,ranksep=0.75];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nnot paired?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig5.pdf
Normal file
49
statistics/figs/fig6.dot
Normal file
@ -0,0 +1,49 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.75,ranksep=0.75];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="1, 2, or >2 groups?",color="lightblue"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?",color="lightblue"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?",color="lightblue"];
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest",color="lightblue"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
twosampOrd[label="paired or\nindependent?",color="lightblue"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig6.pdf
Normal file
52
statistics/figs/fig7.dot
Normal file
@ -0,0 +1,52 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.75,ranksep=0.75];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="indepdendent"];
|
||||
|
||||
|
||||
ttest[label="?",color="lightblue"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig7.pdf
Normal file
54
statistics/figs/fig8.dot
Normal file
@ -0,0 +1,54 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.75,ranksep=0.75];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="indepdendent"];
|
||||
|
||||
|
||||
ttest[label="t-test",color="lightblue"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
pairedTwosampNN[label="?",color="lightblue"];
|
||||
twosampNN->pairedTwosampNN[label="paired"];
|
||||
twosampOrd->pairedTwosampNN[label="paired"];
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig8.pdf
Normal file
54
statistics/figs/fig9.dot
Normal file
@ -0,0 +1,54 @@
|
||||
digraph G {
|
||||
rankdir=TB;
|
||||
ranksep=0.2;
|
||||
node [fontsize=12, shape=rectangle, style=filled, nodesep=0.75,ranksep=0.95];
|
||||
edge [penwidth=2, fontsize=10 ];
|
||||
|
||||
|
||||
data[label="type of data?"];
|
||||
IR[label="data normal distributed\nor n large?"];
|
||||
ordinal[label="1, 2, or >2 groups?"];
|
||||
nominal[label="?"];
|
||||
|
||||
data->IR[label="interval/ratio"];
|
||||
data->nominal[label="nominal/discrete"];
|
||||
data->ordinal[label="ordinal"];
|
||||
|
||||
normal[label="1, 2, or >2 groups?"];
|
||||
notnormal[label="transform into\nnormal?"];
|
||||
trulynotnormal[label="1, 2, or >2 groups?"];
|
||||
|
||||
IR->normal[label="normal"];
|
||||
IR->notnormal[label="not normal"];
|
||||
notnormal->normal[label="yes"];
|
||||
notnormal->trulynotnormal[label="no"];
|
||||
|
||||
onesamp[label="one-sample\nt-test"];
|
||||
normal->onesamp[label="1 group"];
|
||||
|
||||
|
||||
twosamp[label="paired or\nindependent?"];
|
||||
pairedttest[label="paired\nt-test"];
|
||||
normal->twosamp[label="2 groups"];
|
||||
twosamp->pairedttest[label="paired"];
|
||||
|
||||
twosampNN[label="paired or\nindependent?"];
|
||||
indepTwosampNN[label="Wilcoxon-Mann-Whitney\ntest"];
|
||||
|
||||
trulynotnormal->twosampNN[label="2 groups"];
|
||||
twosampNN->indepTwosampNN[label="independent"];
|
||||
|
||||
twosampOrd[label="paired or\nindependent?"];
|
||||
ordinal->twosampOrd[label="2 groups"];
|
||||
twosampOrd->indepTwosampNN[label="independent"];
|
||||
|
||||
|
||||
ttest[label="t-test"];
|
||||
twosamp->ttest[label="independent"];
|
||||
|
||||
signtest[label="sign test"];
|
||||
twosampNN->signtest[label="paired"];
|
||||
twosampOrd->signtest[label="paired"];
|
||||
}
|
||||
|
||||
|
BIN
statistics/figs/fig9.pdf
Normal file
BIN
statistics/figs/frequentistsvsbayesians.png
Normal file
After Width: | Height: | Size: 49 KiB |
106
statistics/figs/generate.py
Normal file
@ -0,0 +1,106 @@
|
||||
from __future__ import division
|
||||
import seaborn as sns
|
||||
import sys
|
||||
sys.path.append('/home/fabee/code/')
|
||||
from matplotlib.pyplot import *
|
||||
from fabee.Plotting import *
|
||||
from scipy import stats
|
||||
from numpy import *
|
||||
|
||||
sns.set_context("talk", font_scale=1.5, rc={"lines.linewidth": 2.5})
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
fig, ax = subplots()
|
||||
fig.subplots_adjust(bottom=.3, left=.3)
|
||||
n = 50
|
||||
x = loadtxt('scripts/thymusglandweights.dat')[:n]
|
||||
ax.bar([0,1],[mean(x),mean(x)],yerr = [std(x,ddof=1), std(x,ddof=1)/sqrt(n)],
|
||||
facecolor='dodgerblue', alpha=.8,width=.7, align='center',
|
||||
error_kw={'color':'k','lw':2}, capsize=10, ecolor='k')
|
||||
ax.set_title('standard deviation or standard error?',fontsize=14, fontweight='bold')
|
||||
|
||||
ax.set_xlim([-.5,1.5])
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xticks([0,1])
|
||||
ax.set_xticklabels([r'$\hat\sigma$', r'$\frac{\hat\sigma}{\sqrt{n}}$'], fontsize=30)
|
||||
|
||||
ax.set_ylabel(r'$\frac{1}{n}\sum_{i=1}^n x_i$',fontsize=30, fontweight='bold')
|
||||
|
||||
fig.savefig('figs/StandardErrorOrStandardDeviation.pdf')
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
fig, ax = subplots()
|
||||
|
||||
t = linspace(-5,5,1000)
|
||||
t2 = linspace(stats.laplace.ppf(0.025),stats.laplace.ppf(1-0.025),1000)
|
||||
|
||||
ax.fill_between(t,stats.laplace.pdf(t),color='dodgerblue')
|
||||
ax.set_xticks([])
|
||||
ax.text(5,-0.05, r'$\hat m$',fontsize=30)
|
||||
ax.text(0,0.7, r'$m$',fontsize=30)
|
||||
ax.set_yticks([])
|
||||
#disjoint_axes(ax)
|
||||
box_off(ax)
|
||||
|
||||
ax.set_title('putative sampling distribution of the median',fontsize=14, fontweight='bold')
|
||||
ax.axis([-5,5,0,.8])
|
||||
ax.plot([0,0],[0,.7],'--k',lw=2)
|
||||
|
||||
fig.savefig('figs/samplingDistributionMedian00.pdf')
|
||||
|
||||
ax.fill_between(t2,stats.laplace.pdf(t2),color='crimson')
|
||||
|
||||
fig.savefig('figs/samplingDistributionMedian01.pdf')
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
fig, ax = subplots()
|
||||
k = 7
|
||||
N = 21
|
||||
F = stats.f
|
||||
t = linspace(1e-6,8,1000)
|
||||
t2= linspace(F.ppf(0.95,k-1,N-k),8,1000)
|
||||
|
||||
ax.fill_between(t,F.pdf(t,k-1,N-k),color='dodgerblue')
|
||||
ax.fill_between(t2,F.pdf(t2,k-1,N-k),color='crimson')
|
||||
ax.set_xlabel('group MS/ error MS')
|
||||
ax.set_ylabel(r'p(group MS/ error MS| $H_0$)')
|
||||
ax.set_title('F-distribution',fontsize=14, fontweight='bold')
|
||||
ax.set_ylim((0,0.8))
|
||||
box_off(ax)
|
||||
fig.savefig('figs/Fdistribution00.pdf')
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
fig, ax = subplots()
|
||||
n = 5
|
||||
p = stats.t.pdf
|
||||
t = linspace(-5,8,1000)
|
||||
t0 = 1.5
|
||||
t00 = 1.
|
||||
|
||||
mu0 = 3
|
||||
t1 = linspace(-5,t00,1000)
|
||||
t2 = linspace(t0,8,1000)
|
||||
t3 = linspace(-5,-t0,1000)
|
||||
ax.fill_between(t,p(t,n-1),color='dodgerblue',alpha=1)
|
||||
ax.fill_between(t2,p(t2,n-1),color='indigo',alpha=1)
|
||||
ax.fill_between(t3,p(t3,n-1),color='indigo',alpha=1)
|
||||
ax.set_xlabel('t')
|
||||
ax.set_ylabel(r'sampling distribution')
|
||||
ax.set_ylim((0,0.8))
|
||||
box_off(ax)
|
||||
fig.savefig('figs/experimentalDesign00.pdf')
|
||||
|
||||
|
||||
ax.fill_between(t,p(t,n-1,loc=mu0),color='lime',alpha=.5)
|
||||
ax.fill_between(t1,p(t1,n-1,loc=mu0),color='magenta',alpha=1)
|
||||
ax.arrow(0,.4,mu0,0,head_width=0.05)
|
||||
ax.arrow(mu0,.4,-mu0,0,head_width=0.05)
|
||||
ax.text(mu0/2,.45,r'$\delta$',fontsize=20)
|
||||
ax.set_xlabel('t')
|
||||
ax.set_ylabel(r'sampling distribution')
|
||||
ax.set_ylim((0,0.8))
|
||||
box_off(ax)
|
||||
fig.savefig('figs/experimentalDesign01.pdf')
|
||||
|
||||
|
265
statistics/figs/generate03.py
Normal file
@ -0,0 +1,265 @@
|
||||
import sys
|
||||
import seaborn as sns
|
||||
sys.path.append('/home/fabee/code/')
|
||||
from matplotlib.pyplot import *
|
||||
from fabee.Plotting import *
|
||||
from scipy import stats
|
||||
from numpy import *
|
||||
|
||||
sns.set_context("talk", font_scale=1.5, rc={"lines.linewidth": 2.5})
|
||||
|
||||
def hinton(matrix, max_weight=None, ax=None):
|
||||
"""Draw Hinton diagram for visualizing a weight matrix."""
|
||||
ax = ax if ax is not None else gca()
|
||||
|
||||
if not max_weight:
|
||||
max_weight = 2**np.ceil(np.log(np.abs(matrix).max())/np.log(2))
|
||||
|
||||
ax.patch.set_facecolor('gray')
|
||||
ax.set_aspect('equal', 'box')
|
||||
ax.xaxis.set_major_locator(NullLocator())
|
||||
ax.yaxis.set_major_locator(NullLocator())
|
||||
|
||||
for (x,y),w in np.ndenumerate(matrix):
|
||||
color = 'white' if w > 0 else 'black'
|
||||
size = np.sqrt(np.abs(w))
|
||||
rect = Rectangle([x - size / 2, y - size / 2], size, size,
|
||||
facecolor=color, edgecolor=color)
|
||||
ax.add_patch(rect)
|
||||
|
||||
ax.autoscale_view()
|
||||
ax.invert_yaxis()
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
fig, ax = subplots()
|
||||
fig.subplots_adjust(bottom=.2)
|
||||
|
||||
ax.bar([0,1],[.2,.8],facecolor='dodgerblue', alpha=.8,width=.7, align='center')
|
||||
ax.set_title('Bernoulli distribution',fontsize=16, fontweight='bold')
|
||||
|
||||
ax.set_xlim([-.5,1.5])
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xlabel('outcomes',fontsize=14, fontweight='bold')
|
||||
ax.set_ylabel('P(outcome)',fontsize=14, fontweight='bold')
|
||||
ax.set_xticks([0,1])
|
||||
ax.set_xticklabels([0,1])
|
||||
ax.set_ylim((0,1))
|
||||
|
||||
fig.savefig('figs/Bernoulli.pdf')
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
fig, ax = subplots()
|
||||
fig.subplots_adjust(bottom=.2)
|
||||
n = 5
|
||||
k = arange(0,n)
|
||||
ax.bar(k,0*k+1./n,facecolor='dodgerblue', alpha=.8,width=.7, align='center')
|
||||
ax.set_title('uniform distribution',fontsize=16, fontweight='bold')
|
||||
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xlabel('k',fontsize=14, fontweight='bold')
|
||||
ax.set_ylabel('P(X=k)',fontsize=14, fontweight='bold')
|
||||
ax.set_xticks(k)
|
||||
ax.set_xticklabels(k+1)
|
||||
ax.set_ylim((0,1))
|
||||
fig.savefig('figs/Uniform.pdf')
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
for i,(n,p) in enumerate(zip([10,20],[.5,.8])):
|
||||
fig, ax = subplots()
|
||||
|
||||
fig.subplots_adjust(bottom=.2)
|
||||
k = arange(n+1)
|
||||
|
||||
ax.bar(k,stats.binom.pmf(k,n,p),facecolor='dodgerblue', alpha=.8,width=.7, align='center')
|
||||
ax.set_title(r'binomial distribution $B\left(%.2f, %i\right)$' % (p,n),fontsize=16, fontweight='bold')
|
||||
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xlabel('k',fontsize=14, fontweight='bold')
|
||||
ax.set_ylabel('P(k)',fontsize=14, fontweight='bold')
|
||||
ax.set_xticks(k)
|
||||
ax.set_xticklabels(k)
|
||||
ax.set_xlim((-1,n+1))
|
||||
ax.set_ylim((0,1))
|
||||
fig.savefig('figs/Binomial%02i.pdf' % (i,))
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
n = 20
|
||||
for i, lam in enumerate([5, 0.05]):
|
||||
fig, ax = subplots()
|
||||
|
||||
fig.subplots_adjust(bottom=.2)
|
||||
k = arange(n+1)
|
||||
|
||||
ax.bar(k,stats.poisson.pmf(k,lam),facecolor='dodgerblue', alpha=.8,width=.7, align='center')
|
||||
ax.set_title(r'Poisson distribution $\lambda=%.2f$' % (lam,),fontsize=16, fontweight='bold')
|
||||
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xlabel('k',fontsize=14, fontweight='bold')
|
||||
ax.set_ylabel('P(k)',fontsize=14, fontweight='bold')
|
||||
ax.set_xticks(k)
|
||||
ax.set_xticklabels(k)
|
||||
ax.set_xlim((-1,n+1))
|
||||
ax.set_ylim((0,1))
|
||||
fig.savefig('figs/Poisson%02i.pdf' % (i,))
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
fig, ax = subplots()
|
||||
|
||||
fig.subplots_adjust(bottom=.2)
|
||||
t = linspace(-3,3,200)
|
||||
ax.fill_between(t,stats.norm.pdf(t),facecolor='dodgerblue', alpha=.8)
|
||||
ax.set_title(r'Gaussian/Normal distribution $N(\mu,\sigma)$',fontsize=16, fontweight='bold')
|
||||
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xlabel('x',fontsize=14, fontweight='bold')
|
||||
ax.set_ylabel('p(x)',fontsize=14, fontweight='bold')
|
||||
fig.savefig('figs/Gaussian00.pdf')
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
fig, ax = subplots()
|
||||
n = 10
|
||||
kk = 5
|
||||
p = .5
|
||||
fig.subplots_adjust(bottom=.2)
|
||||
k = arange(n+1)
|
||||
|
||||
ax.bar(k,stats.binom.pmf(k,n,p),facecolor='dodgerblue', alpha=.8,width=.7, align='center')
|
||||
ax.bar(k[:kk+1],stats.binom.pmf(k[:kk+1],n,p),facecolor='crimson', alpha=.5,width=.7, align='center')
|
||||
ax.set_title(r'binomial distribution $B\left(\frac{1}{2}, %i\right)$' % (n,), fontsize=16, fontweight='bold')
|
||||
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xlabel('k',fontsize=14, fontweight='bold')
|
||||
ax.set_ylabel('P(k)',fontsize=14, fontweight='bold')
|
||||
ax.set_xticks(k)
|
||||
ax.set_xticklabels(k)
|
||||
ax.set_xlim((-1,n+1))
|
||||
ax.set_ylim((0,1))
|
||||
fig.savefig('figs/BinomialCdf00.pdf' )
|
||||
|
||||
|
||||
fig, ax = subplots()
|
||||
n = 10
|
||||
kk = 5
|
||||
p = .5
|
||||
fig.subplots_adjust(bottom=.2)
|
||||
k = arange(n+1)
|
||||
|
||||
ax.bar(k,stats.binom.pmf(k,n,p),facecolor='dodgerblue', alpha=.8,width=.7, align='center',label='p.m.f.')
|
||||
ax.bar(k[:kk+1],stats.binom.pmf(k[:kk+1],n,p),facecolor='crimson', alpha=.5,width=.7, align='center')
|
||||
ax.plot(k,stats.binom.cdf(k,n,p),'ok',mfc='crimson', alpha=1.,label='c.d.f.', ms=15)
|
||||
|
||||
ax.set_title(r'binomial distribution $B\left(\frac{1}{2}, %i\right)$' % (n,), fontsize=16, fontweight='bold')
|
||||
ax.legend(frameon=False, loc='best')
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xlabel('k',fontsize=14, fontweight='bold')
|
||||
ax.set_ylabel('P(k)',fontsize=14, fontweight='bold')
|
||||
ax.set_xticks(k)
|
||||
ax.set_xticklabels(k)
|
||||
ax.set_xlim((-1,n+1))
|
||||
ax.set_ylim((0,1.1))
|
||||
fig.savefig('figs/BinomialCdf01.pdf' )
|
||||
|
||||
fig, ax = subplots()
|
||||
n = 10
|
||||
kk = 2
|
||||
p = .5
|
||||
fig.subplots_adjust(bottom=.2)
|
||||
k = arange(n+1)
|
||||
|
||||
ax.bar(k,stats.binom.pmf(k,n,p),facecolor='dodgerblue', alpha=.8,width=.7, align='center',label='p.m.f.')
|
||||
ax.bar(k[:kk+1],stats.binom.pmf(k[:kk+1],n,p),facecolor='crimson', alpha=.5,width=.7, align='center')
|
||||
ax.bar(k[-kk-1:],stats.binom.pmf(k[-kk-1:],n,p),facecolor='crimson', alpha=.5,width=.7, align='center')
|
||||
|
||||
ax.set_title(r'binomial distribution $B\left(\frac{1}{2}, %i\right)$' % (n,), fontsize=16, fontweight='bold')
|
||||
ax.legend(frameon=False, loc='best')
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xlabel('k',fontsize=14, fontweight='bold')
|
||||
ax.set_ylabel('P(k)',fontsize=14, fontweight='bold')
|
||||
ax.set_xticks(k)
|
||||
ax.set_xticklabels(k)
|
||||
ax.set_xlim((-1,n+1))
|
||||
ax.set_ylim((0,1.1))
|
||||
fig.savefig('figs/BinomialExample00.pdf' )
|
||||
|
||||
|
||||
#------------------------------------------------------
|
||||
fig = figure(figsize=(10,3.5))
|
||||
ax = fig.add_axes([.1,.13,.6,.3])
|
||||
|
||||
n = 10
|
||||
p = [.5,.8]
|
||||
q = [.7, .3]
|
||||
fig.subplots_adjust(bottom=0.2)
|
||||
k = arange(n+1)
|
||||
P = vstack((stats.binom.pmf(k,n,p[0])*q[0], stats.binom.pmf(k,n,p[1])*q[1])).T
|
||||
|
||||
hinton(P, ax = None)
|
||||
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xticks(k)
|
||||
ax.set_xticklabels(k)
|
||||
ax.set_yticks([0,1])
|
||||
ax.set_ylim((-.5,1.5))
|
||||
ax.set_xlim((-.5,n+.5))
|
||||
ax.set_yticklabels(['subject #1', 'subject #2'])
|
||||
fig.savefig('figs/Joint00.pdf' )
|
||||
|
||||
ax = fig.add_axes([.75,.13,.2,.3])
|
||||
ax.barh([0,1],q, facecolor='dodgerblue',alpha=.8, align='center')
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xticks([0,.5,1.])
|
||||
ax.set_yticks([])
|
||||
ax.set_ylim((-.5,1.5))
|
||||
fig.savefig('figs/Joint01.pdf' )
|
||||
|
||||
ax = fig.add_axes([.1,.6,.6,.2])
|
||||
ax.bar(k,sum(P,axis=1), facecolor='dodgerblue',alpha=.8, align='center')
|
||||
a = .7
|
||||
ax.axis([-a,n-a+1.5,0,1])
|
||||
box_off(ax)
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xticks([])
|
||||
ax.set_yticks([0,.3])
|
||||
ax.set_ylim((0,.3))
|
||||
fig.savefig('figs/Joint02.pdf' )
|
||||
|
||||
|
||||
#------------------------------------------------------
|
||||
n = 10
|
||||
k = arange(n+1)
|
||||
p = [.5,.8]
|
||||
q = [.7, .3]
|
||||
P = vstack((stats.binom.pmf(k,n,p[0])*q[0], stats.binom.pmf(k,n,p[1])*q[1]))
|
||||
Pk = sum(P,axis=0)
|
||||
|
||||
fig = figure()
|
||||
for i,kk in enumerate(k):
|
||||
ax = fig.add_subplot(3,4,i+1)
|
||||
fig.subplots_adjust(bottom=0.2)
|
||||
|
||||
ax.bar([0,1],P[:,i]/Pk[i], facecolor='dodgerblue',alpha=.8, align='center')
|
||||
|
||||
|
||||
#disjoint_axes(ax)
|
||||
ax.set_xticks([0,1])
|
||||
ax.set_xticklabels(['#1','#2'], fontsize=8)
|
||||
ax.set_yticks([0,.5,1])
|
||||
ax.set_yticklabels([0,.5,1],fontsize=8)
|
||||
ax.set_xlim((-.5,1.5))
|
||||
ax.set_ylim((0,1))
|
||||
ax.set_title('P({#1,#2}| %i successes)' % (i,), fontsize=8)
|
||||
|
||||
fig.subplots_adjust(wspace=.8, hspace=.8)
|
||||
fig.savefig('figs/Posterior00.pdf')
|
216
statistics/figs/generatePlots.py
Normal file
@ -0,0 +1,216 @@
|
||||
import sys
|
||||
sys.path.append('/home/fabee/code/')
|
||||
import seaborn as sns
|
||||
from matplotlib.pyplot import *
|
||||
from scipy import stats
|
||||
from numpy import *
|
||||
|
||||
from matplotlib.ticker import NullFormatter
|
||||
|
||||
sns.set_context("talk", font_scale=1.5, rc={"lines.linewidth": 2.5})
|
||||
|
||||
# --------------- PLOT 1 -------------------------
|
||||
# the random data
|
||||
distr = stats.uniform
|
||||
col = '+*0<>v'
|
||||
|
||||
for k,distr in enumerate([stats.laplace, stats.norm, stats.expon,stats.uniform]):
|
||||
col = [col[i] for i in random.permutation(6)]
|
||||
x = random.randn(5000)
|
||||
|
||||
nullfmt = NullFormatter() # no labels
|
||||
|
||||
# definitions for the axes
|
||||
left, width = 0.1, 0.65
|
||||
bottom, height = 0.1, 0.65
|
||||
bottom_h = left_h = left+width+0.02
|
||||
|
||||
rect_scatter = [left + 0.22, bottom + 0.22 , width, height]
|
||||
rect_histx = [left + 0.22, bottom, width, 0.2]
|
||||
rect_histy = [left, bottom + 0.22 , 0.2, height]
|
||||
|
||||
# start with a rectangular Figure
|
||||
fig = figure(figsize=(8,8))
|
||||
|
||||
axQQ = axes(rect_scatter)
|
||||
axHistx = axes(rect_histx)
|
||||
axHisty = axes(rect_histy)
|
||||
|
||||
# no labels
|
||||
axHistx.yaxis.set_major_formatter(nullfmt)
|
||||
axHisty.xaxis.set_major_formatter(nullfmt)
|
||||
axQQ.xaxis.set_major_formatter(nullfmt)
|
||||
axQQ.yaxis.set_major_formatter(nullfmt)
|
||||
|
||||
|
||||
|
||||
# the scatter plot:
|
||||
z = distr.ppf(stats.norm.cdf(x))
|
||||
y = linspace(amin(z),amax(z),1000)
|
||||
|
||||
|
||||
z = distr.ppf(stats.norm.cdf(x))
|
||||
if distr != stats.norm:
|
||||
if distr == stats.uniform:
|
||||
axQQ.plot(x, z,'ok',marker=col[0],ms=5,label='c.d.f.')
|
||||
else:
|
||||
axQQ.plot(x, z,'ok',marker=col[0],ms=5,label='correct')
|
||||
|
||||
if distr != stats.expon:
|
||||
axQQ.plot((z-amin(z))/(amax(z)-amin(z))*(amax(x)-amin(x)) + amin(x),\
|
||||
(x-amin(x))/(amax(x)-amin(x))*(amax(z)-amin(z)) + amin(z),'ok',marker=col[1],ms=5)
|
||||
axQQ.plot(x, (x-amin(x))/(amax(x)-amin(x))*(amax(z)-amin(z)) + amin(z),'ok',marker=col[2],ms=5)
|
||||
|
||||
|
||||
# now determine nice limits by hand:
|
||||
axHistx.hist(x, bins=100,normed=True)
|
||||
if distr != stats.expon:
|
||||
axHisty.plot(distr.pdf(y),y)
|
||||
z2 = distr.pdf(y)
|
||||
y = hstack((y[0],y,y[-1]))
|
||||
z2 = hstack((0,z2,0))
|
||||
axHisty.fill(z2,y,color=(.0,.0,1.))
|
||||
|
||||
axQQ.set_xlim(axHistx.get_xlim())
|
||||
axQQ.set_ylim(axHisty.get_ylim())
|
||||
|
||||
if distr == stats.uniform:
|
||||
axQQ.set_ylim((-.1,1.1))
|
||||
axHisty.set_ylim((-.1,1.1))
|
||||
axHisty.set_xlim((.0,1.1))
|
||||
|
||||
axHistx.set_xlabel('x',fontsize=16)
|
||||
axHistx.set_ylabel('p(x)',fontsize=16)
|
||||
axHisty.set_ylabel('y',fontsize=16)
|
||||
axHisty.set_xlabel('p(y)',fontsize=16)
|
||||
|
||||
fig.savefig('figs/HE%i.png' % (k,))
|
||||
if distr == stats.norm:
|
||||
axQQ.plot(x, z,'ok',marker=col[0],ms=5)
|
||||
elif distr == stats.expon:
|
||||
axHisty.plot(distr.pdf(y),y)
|
||||
z2 = distr.pdf(y)
|
||||
y = hstack((y[0],y,y[-1]))
|
||||
z2 = hstack((0,z2,0))
|
||||
axHisty.fill(z2,y,color=(.0,.0,1.))
|
||||
|
||||
else:
|
||||
axQQ.legend(loc=2)
|
||||
fig.savefig('figs/HE%iSolution.png' % (k,))
|
||||
|
||||
# ####################################################3
|
||||
fig = figure()
|
||||
|
||||
|
||||
ax = fig.add_subplot(111)
|
||||
xx = linspace(-3.,stats.norm.ppf(1-0.2),1000)
|
||||
|
||||
x = linspace(-3.,3.,1000)
|
||||
y = stats.norm.pdf(x,scale=1)
|
||||
yy = stats.norm.pdf(xx,scale=1)
|
||||
yy[0] = 0
|
||||
yy[-1] = 0
|
||||
|
||||
ax.plot(x,y,'k-',lw=2)
|
||||
ax.plot(x,stats.norm.pdf(x),'k-',lw=1)
|
||||
ax.set_xlabel('x',fontsize=16)
|
||||
ax.set_ylabel('pdf',fontsize=16)
|
||||
ax.fill(xx,yy,'b')
|
||||
|
||||
ax.set_xlim(-3.,3.)
|
||||
|
||||
ax.text(xx[-1],-.1,'b');
|
||||
|
||||
ax.text(xx[-1],.4,'p(x)',color='k');
|
||||
ax.text(xx[0],.3,'F(b) = P(x <= b)',color='b');
|
||||
|
||||
#XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0)
|
||||
|
||||
fig.savefig('figs/cdf.png')
|
||||
|
||||
#-----------------------------
|
||||
fig = figure()
|
||||
|
||||
|
||||
ax = fig.add_subplot(111)
|
||||
xx = linspace(-3.,stats.norm.ppf(1-0.2),1000)
|
||||
|
||||
x = linspace(-3.,3.,1000)
|
||||
y = stats.norm.pdf(x,scale=1)
|
||||
yy = stats.norm.pdf(xx,scale=1)
|
||||
yy[0] = 0
|
||||
yy[-1] = 0
|
||||
|
||||
ax.plot(x,y,'k-',lw=2)
|
||||
ax.plot(x,stats.norm.cdf(x),'b-',lw=1)
|
||||
ax.set_xlabel('x/b',fontsize=16)
|
||||
ax.set_ylabel('pdf/cdf',fontsize=16)
|
||||
|
||||
ax.set_xlim(-3.,3.)
|
||||
|
||||
ax.text(xx[-1],.4,'p(x)',color='k');
|
||||
ax.text(xx[0],.3,'F(b) = P(x <= b)',color='b');
|
||||
|
||||
#XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0)
|
||||
|
||||
fig.savefig('figs/cdf2.png')
|
||||
|
||||
# ####################################################3
|
||||
fig = figure()
|
||||
|
||||
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
x = hstack((linspace(-3.,stats.norm.ppf(0.13),1000),\
|
||||
linspace(stats.norm.ppf(1-0.13),3.,1000)))
|
||||
|
||||
xx = hstack((linspace(-3.,stats.norm.ppf(0.2),1000),\
|
||||
linspace(stats.norm.ppf(1-0.2),3.,1000)))
|
||||
|
||||
y = stats.norm.pdf(x,scale=1)
|
||||
yy = stats.norm.pdf(xx,scale=1)
|
||||
|
||||
y[[0,999,1000,-1]] = 0
|
||||
yy[[0,999,1000,-1]] = 0
|
||||
|
||||
t = linspace(-3.,3.,1000)
|
||||
ax.plot(t,stats.norm.pdf(t),'k-',lw=2)
|
||||
|
||||
ax.fill(xx[:1000],yy[:1000],'b')
|
||||
ax.fill(xx[1000:],yy[1000:],'b')
|
||||
ax.text(xx[1000],-.1,'b')
|
||||
ax.text(xx[999],-.1,'-b')
|
||||
ax.text(.2,.7,'P(|x|>b) =$\\alpha$',color='b');
|
||||
|
||||
#XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0)
|
||||
|
||||
fig.savefig('figs/pval0.png')
|
||||
|
||||
#---------------------------------------------------
|
||||
fig = figure()
|
||||
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
t = linspace(-3.,3.,1000)
|
||||
ax.plot(t,stats.norm.pdf(t),'k-',lw=2)
|
||||
|
||||
|
||||
ax.fill(x[:1000],y[:1000],'r')
|
||||
ax.fill(x[1000:],y[1000:],'r')
|
||||
|
||||
|
||||
ax.text(x[1000],-.1,'t')
|
||||
ax.text(x[999],-.1,'-t')
|
||||
|
||||
ax.text(.2,.5,'P(|x| > t) = p-value',color='r');
|
||||
|
||||
#XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0)
|
||||
|
||||
fig.savefig('figs/ pval1.png')
|
||||
|
||||
|
||||
|
||||
# show()
|
||||
|
||||
|
||||
#-----------------------------
|
184
statistics/figs/generateTPlots.py
Normal file
@ -0,0 +1,184 @@
|
||||
import sys
|
||||
import seaborn as sns
|
||||
sys.path.append('/home/fabee/code')
|
||||
from matplotlib.pyplot import *
|
||||
from scipy import stats
|
||||
from numpy import *
|
||||
|
||||
sns.set_context("talk", font_scale=1.5, rc={"lines.linewidth": 2.5})
|
||||
|
||||
# define the curves
|
||||
x = np.linspace(2, 20, 200)
|
||||
n = 16.
|
||||
|
||||
|
||||
X =random.randn(n)*4.+12.5
|
||||
fig = figure()
|
||||
ax = fig.add_subplot(111)
|
||||
ax.set_xlim(5, 18)
|
||||
#ax.set_ylim(0, .5)
|
||||
ax.plot([10,10],[-.2,.2],'k-',lw=2)
|
||||
ax.text(10,.3,r'stimulus position',rotation=-30);
|
||||
ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2)
|
||||
ax.text(12.5,.3,r'$\hat\mu$',rotation=-45);
|
||||
|
||||
ax.set_xlabel('x eye position')
|
||||
#XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0)
|
||||
ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10)
|
||||
fig.savefig('figs/repetition0.png')
|
||||
|
||||
# ####################################################3
|
||||
fig = figure()
|
||||
|
||||
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
ax.plot(x,-stats.norm.pdf(x,loc=10,scale=4),'orange',label=r'Null distribution of x')
|
||||
|
||||
|
||||
ax.set_xlim(5, 18)
|
||||
# ax.set_ylim(0, .5)
|
||||
|
||||
ax.plot([10,10],[-.2,.2],'k-',lw=2)
|
||||
ax.text(10,.3,r'stimulus position',rotation=-30);
|
||||
ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2)
|
||||
ax.text(12.5,.3,r'$\hat\mu$',rotation=-45);
|
||||
ax.legend()
|
||||
|
||||
ax.set_xlabel('x eye position')
|
||||
#XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0)
|
||||
ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10)
|
||||
|
||||
fig.savefig('figs/repetition1.png')
|
||||
|
||||
|
||||
# ####################################################3
|
||||
fig = figure()
|
||||
|
||||
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
ax.plot(x,-stats.norm.pdf(x,loc=10,scale=4),'orange',label=r'Null distribution of x')
|
||||
ax.plot(x,-stats.t.pdf(x,n-1,loc=10,scale=1),'b',label=r'Null distribution of $t$')
|
||||
|
||||
ax.set_xlim(5, 18)
|
||||
# ax.set_ylim(0, .5)
|
||||
|
||||
ax.plot([10,10],[-.2,.2],'k-',lw=2)
|
||||
ax.text(10,.3,r'stimulus position',rotation=-30);
|
||||
ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2)
|
||||
ax.text(12.5,.3,r'$\hat\mu$',rotation=-45);
|
||||
ax.legend()
|
||||
|
||||
ax.set_xlabel('x eye position')
|
||||
#XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0)
|
||||
ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10)
|
||||
|
||||
fig.savefig('figs/repetition2.png')
|
||||
|
||||
# ####################################################3
|
||||
fig = figure()
|
||||
|
||||
|
||||
ax = fig.add_subplot(111)
|
||||
xx = linspace(stats.norm.ppf(0.05),stats.norm.ppf(1-0.05),100)
|
||||
xx += 10.
|
||||
|
||||
yy = -stats.norm.pdf(xx,loc=10.,scale=1)
|
||||
xx = hstack((xx[0],xx,xx[-1]))
|
||||
yy = hstack((0,yy,0))
|
||||
|
||||
ax.plot(x,-stats.norm.pdf(x,loc=10,scale=4),'orange',label=r'Null distribution of x')
|
||||
ax.plot(x,-stats.t.pdf(x,n-1,loc=10,scale=1),'b',label=r'Null distribution of $t$')
|
||||
|
||||
ax.fill(xx,yy,'c')
|
||||
|
||||
ax.set_xlim(5, 18)
|
||||
# ax.set_ylim(0, .5)
|
||||
|
||||
ax.plot([10,10],[-.2,.2],'k-',lw=2)
|
||||
ax.text(10,.3,r'stimulus position',rotation=-30);
|
||||
ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2)
|
||||
ax.text(12.5,.3,r'$\hat\mu$',rotation=-45);
|
||||
ax.legend()
|
||||
|
||||
ax.set_xlabel('x eye position')
|
||||
#XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0)
|
||||
ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10)
|
||||
|
||||
fig.savefig('figs/repetition3.png')
|
||||
|
||||
|
||||
# ####################################################3
|
||||
fig = figure()
|
||||
|
||||
|
||||
ax = fig.add_subplot(111)
|
||||
xx = linspace(stats.norm.ppf(0.05),stats.norm.ppf(1-0.05),100)
|
||||
xx += 10.
|
||||
|
||||
yy = -stats.norm.pdf(xx,loc=10.,scale=1)
|
||||
xx = hstack((xx[0],xx,xx[-1]))
|
||||
yy = hstack((0,yy,0))
|
||||
|
||||
ax.plot(x,-stats.norm.pdf(x,loc=10,scale=4),'orange',label=r'Null distribution of x')
|
||||
ax.plot(x,-stats.t.pdf(x,n-1,loc=10,scale=1),'b',label=r'Null distribution of $t$')
|
||||
|
||||
ax.fill(xx,yy,'c')
|
||||
|
||||
ax.set_xlim(5, 18)
|
||||
# ax.set_ylim(0, .5)
|
||||
|
||||
ax.plot([10,10],[-.2,.2],'k-',lw=2)
|
||||
ax.text(10,.3,r'stimulus position',rotation=-30);
|
||||
ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2)
|
||||
ax.text(12.5,.3,r'$\hat\mu$',rotation=-45)
|
||||
|
||||
ax.plot([xx[0],xx[-1]],[0,0],'-g',label=r'$H_0$',lw=4)
|
||||
ax.plot([0,xx[0]],[0,0],'-r',label=r'$H_1$',lw=4)
|
||||
ax.plot([xx[-1],20],[0,0],'-r',lw=4)
|
||||
|
||||
ax.legend()
|
||||
|
||||
ax.set_xlabel('x eye position')
|
||||
#XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0)
|
||||
ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10)
|
||||
|
||||
fig.savefig('figs/repetition4.png')
|
||||
|
||||
|
||||
# ####################################################3
|
||||
fig = figure()
|
||||
|
||||
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
ax.plot(x,-stats.norm.pdf(x,loc=10,scale=4),'orange',label=r'Null distribution of x')
|
||||
ax.plot(x,-stats.t.pdf(x,n-1,loc=10,scale=1),'b',label=r'Null distribution of $t$')
|
||||
|
||||
xx = linspace(0,stats.norm.ppf(0.05)+10.,100)
|
||||
yy = -stats.norm.pdf(xx,loc=10.,scale=1)
|
||||
xx = hstack((xx[0],xx,xx[-1]))
|
||||
yy = hstack((0,yy,0))
|
||||
ax.fill(xx,yy,'magenta')
|
||||
|
||||
xx = linspace(stats.norm.ppf(1-0.05)+10.,20,100)
|
||||
yy = -stats.norm.pdf(xx,loc=10.,scale=1)
|
||||
xx = hstack((xx[0],xx,xx[-1]))
|
||||
yy = hstack((0,yy,0))
|
||||
ax.fill(xx,yy,'magenta')
|
||||
|
||||
ax.set_xlim(5, 18)
|
||||
# ax.set_ylim(0, .5)
|
||||
|
||||
ax.plot([10,10],[-.2,.2],'k-',lw=2)
|
||||
ax.text(10,.3,r'stimulus position',rotation=-30);
|
||||
ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2)
|
||||
ax.text(12.5,.3,r'$\hat\mu$',rotation=-45);
|
||||
ax.legend()
|
||||
|
||||
ax.set_xlabel('x eye position')
|
||||
#XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0)
|
||||
ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10)
|
||||
|
||||
fig.savefig('figs/repetition5.png')
|
BIN
statistics/figs/hunger.png
Normal file
After Width: | Height: | Size: 39 KiB |
BIN
statistics/figs/mensqqplot.pdf
Normal file
BIN
statistics/figs/multipletesting.pdf
Normal file
72
statistics/figs/multipletesting.py
Normal file
@ -0,0 +1,72 @@
|
||||
from __future__ import division
|
||||
from numpy import *
|
||||
from scipy import stats
|
||||
from matplotlib.pyplot import *
|
||||
|
||||
N = random.randn
|
||||
|
||||
m = 2000
|
||||
n = 20
|
||||
|
||||
T = zeros((m,))
|
||||
R = zeros((m,))
|
||||
pT = zeros((m,))
|
||||
pR = zeros((m,))
|
||||
|
||||
for k in xrange(m):
|
||||
x = N(n)
|
||||
y = N(n)
|
||||
|
||||
T[k], pT[k] = stats.ttest_ind(x,y)
|
||||
R[k], pR[k] = stats.ranksums(x,y)
|
||||
|
||||
a = stats.t.ppf([0.025,1.-0.025], n-1)
|
||||
b = stats.norm.ppf([0.025,1.-0.025])
|
||||
|
||||
|
||||
fig = figure(figsize=(8,8),dpi=100)
|
||||
ax = fig.add_axes([.3,.3,.6,.6])
|
||||
axb = fig.add_axes([.3,.1,.6,.2])
|
||||
axl = fig.add_axes([.1,.3,.2,.6])
|
||||
|
||||
ax.plot(T,R,'ok',mfc=(.7,.7,.7))
|
||||
axb.hist(T,bins=50,facecolor=(1.,.7,.7),normed=True)
|
||||
axl.hist(R,bins=50,facecolor=(.7,.7,1.),normed=True,orientation='horizontal')
|
||||
axl.axis([0,1,-5,5])
|
||||
axb.plot([a[0],a[0]],[0,1],'k--',lw=2)
|
||||
axb.plot([a[1],a[1]],[0,1],'k--',lw=2)
|
||||
|
||||
axl.plot([0,1],[b[0],b[0]],'k--',lw=2)
|
||||
axl.plot([0,1],[b[1],b[1]],'k--',lw=2)
|
||||
axl.set_ylabel('standardized U statistic', fontsize=16)
|
||||
axb.set_xlabel('t statistic', fontsize=16)
|
||||
|
||||
# print sum(1.*(T < a[0] ))/m + sum(1.*(T > a[1]))/m
|
||||
# print sum(1.*(R < b[0] ))/m + sum(1.*(R > b[1]))/m
|
||||
|
||||
ax.fill([-5,a[0],a[0],-5],[-5,-5,5,5],color=(1.,.7,.7),alpha=.5)
|
||||
ax.fill([a[1],5,5,a[1]],[-5,-5,5,5],color=(1.,.7,.7),alpha=.5)
|
||||
axb.fill([-5,a[0],a[0],-5],[0,0,1,1],color=(1.,.7,.7),alpha=.5)
|
||||
axb.fill([a[1],5,5,a[1]],[0,0,1,1],color=(1.,.7,.7),alpha=.5)
|
||||
|
||||
|
||||
ax.fill([-5,-5,5,5],[-5,b[0],b[0],-5],color=(.7,.7,1.),alpha=.5)
|
||||
ax.fill([-5,-5,5,5],[b[1],5,5,b[1]],color=(.7,.7,1.),alpha=.5)
|
||||
axl.fill([0,0,1,1],[-5,b[0],b[0],-5],color=(.7,.7,1.),alpha=.5)
|
||||
axl.fill([0,0,1,1],[b[1],5,5,b[1]],color=(.7,.7,1.),alpha=.5)
|
||||
|
||||
|
||||
|
||||
axb.axis([-5,5,0,1])
|
||||
ax.axis([-5,5,-5,5])
|
||||
|
||||
axl.set_xticks([])
|
||||
axb.set_yticks([])
|
||||
axl = axl.twiny()
|
||||
axb = axb.twinx()
|
||||
axl.set_xticks([0,.5,1.])
|
||||
axb.set_yticks([0,.5,1.])
|
||||
|
||||
|
||||
|
||||
fig.savefig('multipletesting.pdf')
|
BIN
statistics/figs/nnqqplot.pdf
Normal file
BIN
statistics/figs/onetailed.png
Normal file
After Width: | Height: | Size: 28 KiB |