stubs for plotting exercise
This commit is contained in:
		
							parent
							
								
									ed561f2f19
								
							
						
					
					
						commit
						2fbbf04e98
					
				| @ -211,7 +211,7 @@ cost function, e.g. the gradient descent \matlabfun{lsqcurvefit()}. | ||||
| 
 | ||||
| 
 | ||||
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| \section{Fits von Wahrscheinlichkeitsverteilungen} | ||||
| \section{Fitting probability distributions} | ||||
| Finally let's consider the case in which we want to fit the parameters | ||||
| of a probability density function (e.g. the shape parameter of a | ||||
| \enterm{Gamma-distribution}) to a dataset. | ||||
|  | ||||
							
								
								
									
										
											BIN
										
									
								
								plotting/exercises/UT_WBMW_Black_RGB.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								plotting/exercises/UT_WBMW_Black_RGB.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										213
									
								
								plotting/exercises/exercises.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										213
									
								
								plotting/exercises/exercises.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,213 @@ | ||||
| \documentclass[12pt,a4paper,pdftex]{exam} | ||||
| 
 | ||||
| \usepackage[german]{babel} | ||||
| \usepackage{pslatex} | ||||
| \usepackage[mediumspace,mediumqspace,Gray]{SIunits}      % \ohm, \micro | ||||
| \usepackage{xcolor} | ||||
| \usepackage{graphicx} | ||||
| \usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref} | ||||
| 
 | ||||
| %%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| \usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry} | ||||
| \pagestyle{headandfoot} | ||||
| \ifprintanswers | ||||
| \newcommand{\stitle}{: Solutions} | ||||
| \else | ||||
| \newcommand{\stitle}{} | ||||
| \fi | ||||
| \header{{\bfseries\large Exercise 12\stitle}}{{\bfseries\large Maximum likelihood}}{{\bfseries\large January 7th, 2019}} | ||||
| \firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email: | ||||
| jan.benda@uni-tuebingen.de} | ||||
| \runningfooter{}{\thepage}{} | ||||
| 
 | ||||
| \setlength{\baselineskip}{15pt} | ||||
| \setlength{\parindent}{0.0cm} | ||||
| \setlength{\parskip}{0.3cm} | ||||
| \renewcommand{\baselinestretch}{1.15} | ||||
| 
 | ||||
| %%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| \usepackage{listings} | ||||
| \lstset{ | ||||
|   language=Matlab, | ||||
|   basicstyle=\ttfamily\footnotesize, | ||||
|   numbers=left, | ||||
|   numberstyle=\tiny, | ||||
|   title=\lstname, | ||||
|   showstringspaces=false, | ||||
|   commentstyle=\itshape\color{darkgray}, | ||||
|   breaklines=true, | ||||
|   breakautoindent=true, | ||||
|   columns=flexible, | ||||
|   frame=single, | ||||
|   xleftmargin=1em, | ||||
|   xrightmargin=1em, | ||||
|   aboveskip=10pt | ||||
| } | ||||
| 
 | ||||
| %%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| \usepackage{amsmath} | ||||
| \usepackage{amssymb} | ||||
| \usepackage{bm}  | ||||
| \usepackage{dsfont} | ||||
| \newcommand{\naZ}{\mathds{N}} | ||||
| \newcommand{\gaZ}{\mathds{Z}} | ||||
| \newcommand{\raZ}{\mathds{Q}} | ||||
| \newcommand{\reZ}{\mathds{R}} | ||||
| \newcommand{\reZp}{\mathds{R^+}} | ||||
| \newcommand{\reZpN}{\mathds{R^+_0}} | ||||
| \newcommand{\koZ}{\mathds{C}} | ||||
| 
 | ||||
| %%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| \newcommand{\continue}{\ifprintanswers% | ||||
| \else | ||||
| \vfill\hspace*{\fill}$\rightarrow$\newpage% | ||||
| \fi} | ||||
| \newcommand{\continuepage}{\ifprintanswers% | ||||
| \newpage | ||||
| \else | ||||
| \vfill\hspace*{\fill}$\rightarrow$\newpage% | ||||
| \fi} | ||||
| \newcommand{\newsolutionpage}{\ifprintanswers% | ||||
| \newpage% | ||||
| \else | ||||
| \fi} | ||||
| 
 | ||||
| %%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| \newcommand{\qt}[1]{\textbf{#1}\\} | ||||
| \newcommand{\pref}[1]{(\ref{#1})} | ||||
| \newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}} | ||||
| \newcommand{\code}[1]{\texttt{#1}} | ||||
| 
 | ||||
| 
 | ||||
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| \begin{document} | ||||
| 
 | ||||
| \input{instructions} | ||||
| 
 | ||||
| 
 | ||||
| \begin{questions} | ||||
| 
 | ||||
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| \question \qt{Maximum likelihood of the standard deviation} | ||||
| Let's compute the likelihood and the log-likelihood for the estimation | ||||
| of the standard deviation. | ||||
| \begin{parts} | ||||
|   \part Draw $n=50$ random numbers from a normal distribution with | ||||
|   mean $\mu=3$ and standard deviation $\sigma=2$. | ||||
| 
 | ||||
|   \part Plot the likelihood (computed as the product of probabilities) | ||||
|   and the log-likelihood (sum of the logarithms of the probabilities) | ||||
|   as a function of the standard deviation. Compare the position of the | ||||
|   maxima with the standard deviation that you compute directly from | ||||
|   the data. | ||||
| 
 | ||||
|   \part Increase $n$ to 1000. What happens to the likelihood, what | ||||
|   happens to the log-likelihood? Why? | ||||
| \end{parts} | ||||
| \begin{solution} | ||||
|   \lstinputlisting{mlestd.m} | ||||
|   \includegraphics[width=1\textwidth]{mlestd}\\ | ||||
| 
 | ||||
|   The more data the smaller the product of the probabilities ($\approx | ||||
|   p^n$ with $0 \le p < 1$) and the smaller the sum of the logarithms | ||||
|   of the probabilities ($\approx n\log p$, note that $\log p < 0$). | ||||
| 
 | ||||
|   The product eventually gets smaller than the precision of the | ||||
|   floating point numbers support. Therefore for $n=1000$ the products | ||||
|   becomes zero. Using the logarithm avoids this numerical problem. | ||||
| \end{solution} | ||||
| 
 | ||||
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| \question \qt{Maximum-likelihood estimator of a line through the origin}  | ||||
| In the lecture we derived the following equation for an | ||||
| maximum-likelihood estimate of the slope $\theta$ of a straight line | ||||
| through the origin fitted to $n$ pairs of data values $(x_i|y_i)$ with | ||||
| standard deviation $\sigma_i$: | ||||
| \[\theta = \frac{\sum_{i=1}^n \frac{x_i y_i}{\sigma_i^2}}{ \sum_{i=1}^n | ||||
|   \frac{x_i^2}{\sigma_i^2}} \] | ||||
| \begin{parts} | ||||
|   \part \label{mleslopefunc} Write a function that takes two vectors | ||||
|   $x$ and $y$ containing the data pairs and returns the slope, | ||||
|   computed according to this equation. For simplicity we assume | ||||
|   $\sigma_i=\sigma$ for all $1 \le i \le n$. How does this simplify | ||||
|   the equation for the slope? | ||||
|   \begin{solution} | ||||
|     \lstinputlisting{mleslope.m} | ||||
|   \end{solution} | ||||
| 
 | ||||
|   \part Write a script that generates data pairs that scatter around a | ||||
|   line through the origin with a given slope. Use the function from | ||||
|   \pref{mleslopefunc} to compute the slope from the generated data. | ||||
|   Compare the computed slope with the true slope that has been used to | ||||
|   generate the data. Plot the data togehther with the line from which | ||||
|   the data were generated and the maximum-likelihood fit. | ||||
|   \begin{solution} | ||||
|     \lstinputlisting{mlepropfit.m} | ||||
|     \includegraphics[width=1\textwidth]{mlepropfit} | ||||
|   \end{solution} | ||||
| 
 | ||||
|   \part \label{mleslopecomp} Vary the number of data pairs, the slope, | ||||
|   as well as the variance of the data points around the true | ||||
|   line. Under which conditions is the maximum-likelihood estimation of | ||||
|   the slope closer to the true slope? | ||||
| 
 | ||||
|   \part To answer \pref{mleslopecomp} more precisely, generate for | ||||
|   each condition let's say 1000 data sets and plot a histogram of the | ||||
|   estimated slopes. How does the histogram, its mean and standard | ||||
|   deviation relate to the true slope? | ||||
| \end{parts} | ||||
| \begin{solution} | ||||
|   \lstinputlisting{mlepropest.m} | ||||
|   \includegraphics[width=1\textwidth]{mlepropest}\\ | ||||
|   The estimated slopes are centered around the true slope. The | ||||
|   standard deviation of the estimated slopes gets smaller for larger | ||||
|   $n$ and less noise in the data. | ||||
| \end{solution} | ||||
| 
 | ||||
| \continue | ||||
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||||
| \question \qt{Maximum-likelihood-estimation of a probability-density function} | ||||
| Many probability-density functions have parameters that cannot be | ||||
| computed directly from the data, like, for example, the mean of | ||||
| normally-distributed data. Such parameter need to be estimated by | ||||
| means of the maximum-likelihood from the data. | ||||
| 
 | ||||
| Let us demonstrate this approach by means of data that are drawn from a | ||||
| gamma distribution, | ||||
| \begin{parts} | ||||
|   \part Find out which \code{matlab} function computes the | ||||
|   probability-density function of the gamma distribution. | ||||
| 
 | ||||
|   \part \label{gammaplot} Use this function to plot the | ||||
|   probability-density function of the gamma distribution for various | ||||
|   values of the (positive) ``shape'' parameter. Wet set the ``scale'' | ||||
|   parameter to one. | ||||
| 
 | ||||
|   \part Find out which \code{matlab} function generates random numbers | ||||
|   that are distributed according to a gamma distribution. Generate | ||||
|   with this function 50 random numbers using one of the values of the | ||||
|   ``shape'' parameter used in \pref{gammaplot}. | ||||
| 
 | ||||
|   \part Compute and plot a properly normalized histogram of these | ||||
|   random numbers. | ||||
| 
 | ||||
|   \part Find out which \code{matlab} function fit a distribution to a | ||||
|   vector of random numbers according to the maximum-likelihood method. | ||||
|   How do you need to use this function in order to fit a gamma | ||||
|   distribution to the data? | ||||
| 
 | ||||
|   \part Estimate with this function the parameter of the gamma | ||||
|   distribution used to generate the data. | ||||
| 
 | ||||
|   \part Finally, plot the fitted gamma distribution on top of the | ||||
|   normalized histogram of the data. | ||||
| \end{parts} | ||||
| \begin{solution} | ||||
|   \lstinputlisting{mlepdffit.m} | ||||
|   \includegraphics[width=1\textwidth]{mlepdffit} | ||||
| \end{solution} | ||||
| 
 | ||||
| \end{questions} | ||||
| 
 | ||||
| \end{document} | ||||
							
								
								
									
										41
									
								
								plotting/exercises/instructions.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										41
									
								
								plotting/exercises/instructions.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,41 @@ | ||||
| \vspace*{-8ex} | ||||
| \begin{center} | ||||
| \textbf{\Large Introduction to scientific computing}\\[1ex] | ||||
| {\large Jan Grewe, Jan Benda}\\[-3ex] | ||||
| Neuroethology lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\ | ||||
| \end{center} | ||||
| 
 | ||||
| % \ifprintanswers% | ||||
| % \else | ||||
| 
 | ||||
| % % Die folgenden Aufgaben dienen der Wiederholung, \"Ubung und | ||||
| % % Selbstkontrolle und sollten eigenst\"andig bearbeitet und gel\"ost | ||||
| % % werden. Die L\"osung soll in Form eines einzelnen Skriptes (m-files) | ||||
| % % im ILIAS hochgeladen werden. Jede Aufgabe sollte in einer eigenen | ||||
| % % ``Zelle'' gel\"ost sein. Die Zellen \textbf{m\"ussen} unabh\"angig | ||||
| % % voneinander ausf\"uhrbar sein. Das Skript sollte nach dem Muster: | ||||
| % % ``variablen\_datentypen\_\{nachname\}.m'' benannt werden | ||||
| % % (z.B. variablen\_datentypen\_mueller.m). | ||||
| 
 | ||||
| % \begin{itemize} | ||||
| % \item \"Uberzeuge dich von jeder einzelnen Zeile deines Codes, dass | ||||
| %   sie auch wirklich das macht, was sie machen soll! Teste dies mit | ||||
| %   kleinen Beispielen direkt in der Kommandozeile. | ||||
| % \item Versuche die L\"osungen der Aufgaben m\"oglichst in | ||||
| %   sinnvolle kleine Funktionen herunterzubrechen. | ||||
| %   Sobald etwas \"ahnliches mehr als einmal berechnet werden soll, | ||||
| %   lohnt es sich eine Funktion daraus zu schreiben! | ||||
| % \item Teste rechenintensive \code{for} Schleifen, Vektoren, Matrizen | ||||
| %   zuerst mit einer kleinen Anzahl von Wiederholungen oder kleiner | ||||
| %   Gr\"o{\ss}e, und benutze erst am Ende, wenn alles \"uberpr\"uft | ||||
| %   ist, eine gro{\ss}e Anzahl von Wiederholungen oder Elementen, um eine gute | ||||
| %   Statistik zu bekommen. | ||||
| % \item Benutze die Hilfsfunktion von \code{matlab} (\code{help | ||||
| %     commando} oder \code{doc commando}) und das Internet, um | ||||
| %   herauszufinden, wie bestimmte \code{matlab} Funktionen zu verwenden | ||||
| %   sind und was f\"ur M\"oglichkeiten sie bieten. | ||||
| %   Auch zu inhaltlichen Konzepten bietet das Internet oft viele | ||||
| %   Antworten! | ||||
| % \end{itemize} | ||||
| 
 | ||||
| % \fi | ||||
							
								
								
									
										74
									
								
								plotting/exercises/plotting_exercise.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								plotting/exercises/plotting_exercise.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,74 @@ | ||||
| import numpy as np | ||||
| import matplotlib.pyplot as plt | ||||
| import scipy.io as scio | ||||
| from IPython import embed | ||||
| 
 | ||||
| def boltzmann(x, y_max, slope, inflection): | ||||
|     """ | ||||
|     The underlying Boltzmann function. | ||||
|     .. math:: | ||||
|         f(x) = y_max / \exp{-slope*(x-inflection} | ||||
| 
 | ||||
|     :param x: The x values. | ||||
|     :param y_max: The maximum value. | ||||
|     :param slope: The slope parameter k | ||||
|     :param inflection: the position of the inflection point. | ||||
|     :return: the y values. | ||||
|     """ | ||||
|     y = y_max / (1 + np.exp(-slope * (x - inflection))) | ||||
|     return y | ||||
| 
 | ||||
| 
 | ||||
| class Animal(object): | ||||
| 
 | ||||
|     def __init__(self, delay, learning_rate, volatility, responsiveness): | ||||
|         """ | ||||
|         :param delay: | ||||
|         :param learning_rate: delta percent_correct per session | ||||
|         :param volatility: 0 -> 1 the noise in the decision | ||||
|         :param responsiveness: 0 -> 1 probability of actually conducting a trial | ||||
|         """ | ||||
|         self.__delay = delay | ||||
|         self.__learning_rate = learning_rate | ||||
|         self.__volatility = volatility | ||||
|         self.__responsiveness = responsiveness | ||||
| 
 | ||||
|     def simulate(self, session_count=10, trials=20, task_difficulties=[]): | ||||
|         tasks = 1 if len(task_difficulties) == 0 else len(task_difficulties) | ||||
|         if len(task_difficulties) == 0: | ||||
|             task_difficulties = [0] | ||||
|         avg_perf = np.zeros((session_count, tasks)) | ||||
|         err_perf = np.zeros((session_count, tasks)) | ||||
|         trials_performed = np.zeros(session_count) | ||||
|         for i in range(session_count): | ||||
|             for j in range(tasks): | ||||
|                 base_performance = boltzmann(i, 1.0, self.__learning_rate/20, self.__delay) | ||||
|                 penalty = base_performance * task_difficulties[j] * 0.5 | ||||
|                 base_perf = 50 + 50 * (base_performance - penalty) | ||||
|                 trials_completed = np.random.rand(trials) < self.__responsiveness | ||||
|                 performances = np.random.randn(trials) * self.__volatility * 100 + base_perf | ||||
|                 avg_perf[i, j] = np.mean(performances[trials_completed]) | ||||
|                 err_perf[i, j] = np.std(performances[trials_completed]) | ||||
|                 trials_performed = np.sum(trials_completed) | ||||
|         return avg_perf, err_perf, trials_performed | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
| 
 | ||||
|     session_count = 30 | ||||
|     task_difficulties = [0, 0.3, 1.] | ||||
| 
 | ||||
|     delays = [5, 10, 12, 20] | ||||
|     learning_rates = np.array([5, 10, 2, 20]) | ||||
|     volatilities = np.random.rand(4) * 0.5 | ||||
|     responsivness = np.random.rand(4) * 0.5 + 0.5 | ||||
| 
 | ||||
|     for i in range(len(delays)): | ||||
|         d = delays[i] | ||||
|         lr = learning_rates[i] | ||||
|         v = volatilities[i], | ||||
|         r = responsivness[i] | ||||
|         a = Animal(d, lr, v, r) | ||||
|         ap, ep, tp = a.simulate(session_count=session_count, task_difficulties=[0, 0.3, 0.6]) | ||||
|         plt.plot(ap) | ||||
|         embed() | ||||
| @ -1,7 +1,7 @@ | ||||
| %!PS-Adobe-2.0 EPSF-2.0 | ||||
| %%Title: pointprocessscetchA.tex | ||||
| %%Creator: gnuplot 4.6 patchlevel 4 | ||||
| %%CreationDate: Mon Nov 26 17:57:49 2018 | ||||
| %%Creator: gnuplot 5.0 patchlevel 6 | ||||
| %%CreationDate: Thu Oct 17 14:13:46 2019 | ||||
| %%DocumentFonts:  | ||||
| %%BoundingBox: 50 50 373 135 | ||||
| %%EndComments | ||||
| @ -18,6 +18,7 @@ gnudict begin | ||||
| /Dashlength 1 def | ||||
| /Landscape false def | ||||
| /Level1 false def | ||||
| /Level3 false def | ||||
| /Rounded true def | ||||
| /ClipToBoundingBox false def | ||||
| /SuppressPDFMark false def | ||||
| @ -29,11 +30,11 @@ gnudict begin | ||||
| % | ||||
| /vshift -73 def | ||||
| /dl1 { | ||||
|   10.0 Dashlength mul mul | ||||
|   10.0 Dashlength userlinewidth gnulinewidth div mul mul mul | ||||
|   Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if | ||||
| } def | ||||
| /dl2 { | ||||
|   10.0 Dashlength mul mul | ||||
|   10.0 Dashlength userlinewidth gnulinewidth div mul mul mul | ||||
|   Rounded { currentlinewidth 0.75 mul add } if | ||||
| } def | ||||
| /hpt_ 31.5 def | ||||
| @ -47,7 +48,7 @@ gnudict begin | ||||
|   } if | ||||
| } def | ||||
| % | ||||
| % Gnuplot Prolog Version 4.6 (September 2012) | ||||
| % Gnuplot Prolog Version 5.1 (Oct 2015) | ||||
| % | ||||
| %/SuppressPDFMark true def | ||||
| % | ||||
| @ -64,11 +65,11 @@ gnudict begin | ||||
| /vpt2 vpt 2 mul def | ||||
| /hpt2 hpt 2 mul def | ||||
| /Lshow {currentpoint stroke M 0 vshift R  | ||||
| 	Blacktext {gsave 0 setgray show grestore} {show} ifelse} def | ||||
| 	Blacktext {gsave 0 setgray textshow grestore} {textshow} ifelse} def | ||||
| /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R | ||||
| 	Blacktext {gsave 0 setgray show grestore} {show} ifelse} def | ||||
| 	Blacktext {gsave 0 setgray textshow grestore} {textshow} ifelse} def | ||||
| /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R  | ||||
| 	Blacktext {gsave 0 setgray show grestore} {show} ifelse} def | ||||
| 	Blacktext {gsave 0 setgray textshow grestore} {textshow} ifelse} def | ||||
| /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def | ||||
|   /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def | ||||
| /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} | ||||
| @ -82,7 +83,7 @@ gnudict begin | ||||
| /PL {stroke userlinewidth setlinewidth | ||||
| 	Rounded {1 setlinejoin 1 setlinecap} if} def | ||||
| 3.8 setmiterlimit | ||||
| % Default Line colors | ||||
| % Classic Line colors (version 5.0) | ||||
| /LCw {1 1 1} def | ||||
| /LCb {0 0 0} def | ||||
| /LCa {0 0 0} def | ||||
| @ -95,19 +96,21 @@ gnudict begin | ||||
| /LC6 {0 0 0} def | ||||
| /LC7 {1 0.3 0} def | ||||
| /LC8 {0.5 0.5 0.5} def | ||||
| % Default Line Types | ||||
| % Default dash patterns (version 5.0) | ||||
| /LTB {BL [] LCb DL} def | ||||
| /LTw {PL [] 1 setgray} def | ||||
| /LTb {BL [] LCb DL} def | ||||
| /LTb {PL [] LCb DL} def | ||||
| /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def | ||||
| /LT0 {PL [] LC0 DL} def | ||||
| /LT1 {PL [4 dl1 2 dl2] LC1 DL} def | ||||
| /LT2 {PL [2 dl1 3 dl2] LC2 DL} def | ||||
| /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def | ||||
| /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def | ||||
| /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def | ||||
| /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def | ||||
| /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def | ||||
| /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def | ||||
| /LT1 {PL [2 dl1 3 dl2] LC1 DL} def | ||||
| /LT2 {PL [1 dl1 1.5 dl2] LC2 DL} def | ||||
| /LT3 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC3 DL} def | ||||
| /LT4 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def | ||||
| /LT5 {PL [4 dl1 2 dl2] LC5 DL} def | ||||
| /LT6 {PL [1.5 dl1 1.5 dl2 1.5 dl1 1.5 dl2 1.5 dl1 6 dl2] LC6 DL} def | ||||
| /LT7 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC7 DL} def | ||||
| /LT8 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC8 DL} def | ||||
| /SL {[] 0 setdash} def | ||||
| /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def | ||||
| /Dia {stroke [] 0 setdash 2 copy vpt add M | ||||
|   hpt neg vpt neg V hpt vpt neg V | ||||
| @ -329,9 +332,14 @@ gnudict begin | ||||
| % | ||||
| /languagelevel where | ||||
|  {pop languagelevel} {1} ifelse | ||||
|  2 lt | ||||
| 	{/InterpretLevel1 true def} | ||||
| 	{/InterpretLevel1 Level1 def} | ||||
| dup 2 lt | ||||
| 	{/InterpretLevel1 true def | ||||
| 	 /InterpretLevel3 false def} | ||||
| 	{/InterpretLevel1 Level1 def | ||||
| 	 2 gt | ||||
| 	    {/InterpretLevel3 Level3 def} | ||||
| 	    {/InterpretLevel3 false def} | ||||
| 	 ifelse } | ||||
|  ifelse | ||||
| % | ||||
| % PostScript level 2 pattern fill definitions | ||||
| @ -420,6 +428,7 @@ Level1 {Level1PatternFill} {Level2PatternFill} ifelse | ||||
| /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont | ||||
| dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall | ||||
| currentdict end definefont pop | ||||
| % | ||||
| Level1 SuppressPDFMark or  | ||||
| {} { | ||||
| /SDict 10 dict def | ||||
| @ -429,14 +438,42 @@ systemdict /pdfmark known not { | ||||
| SDict begin [ | ||||
|   /Title (pointprocessscetchA.tex) | ||||
|   /Subject (gnuplot plot) | ||||
|   /Creator (gnuplot 4.6 patchlevel 4) | ||||
|   /Author (benda) | ||||
|   /Creator (gnuplot 5.0 patchlevel 6) | ||||
|   /Author (grewe) | ||||
| %  /Producer (gnuplot) | ||||
| %  /Keywords () | ||||
|   /CreationDate (Mon Nov 26 17:57:49 2018) | ||||
|   /CreationDate (Thu Oct 17 14:13:46 2019) | ||||
|   /DOCINFO pdfmark | ||||
| end | ||||
| } ifelse | ||||
| % | ||||
| % Support for boxed text - Ethan A Merritt May 2005 | ||||
| % | ||||
| /InitTextBox { userdict /TBy2 3 -1 roll put userdict /TBx2 3 -1 roll put | ||||
|            userdict /TBy1 3 -1 roll put userdict /TBx1 3 -1 roll put | ||||
| 	   /Boxing true def } def | ||||
| /ExtendTextBox { Boxing | ||||
|     { gsave dup false charpath pathbbox | ||||
|       dup TBy2 gt {userdict /TBy2 3 -1 roll put} {pop} ifelse | ||||
|       dup TBx2 gt {userdict /TBx2 3 -1 roll put} {pop} ifelse | ||||
|       dup TBy1 lt {userdict /TBy1 3 -1 roll put} {pop} ifelse | ||||
|       dup TBx1 lt {userdict /TBx1 3 -1 roll put} {pop} ifelse | ||||
|       grestore } if } def | ||||
| /PopTextBox { newpath TBx1 TBxmargin sub TBy1 TBymargin sub M | ||||
|                TBx1 TBxmargin sub TBy2 TBymargin add L | ||||
| 	       TBx2 TBxmargin add TBy2 TBymargin add L | ||||
| 	       TBx2 TBxmargin add TBy1 TBymargin sub L closepath } def | ||||
| /DrawTextBox { PopTextBox stroke /Boxing false def} def | ||||
| /FillTextBox { gsave PopTextBox 1 1 1 setrgbcolor fill grestore /Boxing false def} def | ||||
| 0 0 0 0 InitTextBox | ||||
| /TBxmargin 20 def | ||||
| /TBymargin 20 def | ||||
| /Boxing false def | ||||
| /textshow { ExtendTextBox Gshow } def | ||||
| % | ||||
| % redundant definitions for compatibility with prologue.ps older than 5.0.2 | ||||
| /LTB {BL [] LCb DL} def | ||||
| /LTb {PL [] LCb DL} def | ||||
| end | ||||
| %%EndProlog | ||||
| %%Page: 1 1 | ||||
| @ -450,10 +487,9 @@ newpath | ||||
| 2.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 1.000 UP | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| LTb | ||||
| 1.000 UL | ||||
| LTb | ||||
| gsave 6208 824 N 0 -32 V 121 32 V -121 32 V 0 -32 V 1 PolyFill | ||||
| @ -467,9 +503,11 @@ gsave 6208 824 N 0 -32 V 121 32 V -121 32 V 0 -32 V 1 PolyFill | ||||
| stroke | ||||
| 2.000 UL | ||||
| LTb | ||||
| 0.00 0.00 0.00 C 10.000 UL | ||||
| LT0 | ||||
| LC0 setrgbcolor | ||||
| 0.00 0.00 0.00 C % Begin plot #1 | ||||
| 10.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 910 573 M | ||||
| 0 503 V | ||||
| 1412 573 M | ||||
| @ -488,11 +526,16 @@ LC0 setrgbcolor | ||||
| 0 503 V | ||||
| 5685 573 M | ||||
| 0 503 V | ||||
| 1.000 UP | ||||
| stroke | ||||
| LTw | ||||
| % End plot #1 | ||||
| 2.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 1.000 UP | ||||
| 2.000 UL | ||||
| LTb | ||||
| 0.00 0.00 0.00 C stroke | ||||
| grestore | ||||
| end | ||||
|  | ||||
										
											Binary file not shown.
										
									
								
							| @ -1,7 +1,7 @@ | ||||
| %!PS-Adobe-2.0 EPSF-2.0 | ||||
| %%Title: pointprocessscetchB.tex | ||||
| %%Creator: gnuplot 4.6 patchlevel 4 | ||||
| %%CreationDate: Mon Nov 26 17:57:49 2018 | ||||
| %%Creator: gnuplot 5.0 patchlevel 6 | ||||
| %%CreationDate: Thu Oct 17 14:13:46 2019 | ||||
| %%DocumentFonts:  | ||||
| %%BoundingBox: 50 50 373 237 | ||||
| %%EndComments | ||||
| @ -18,6 +18,7 @@ gnudict begin | ||||
| /Dashlength 1 def | ||||
| /Landscape false def | ||||
| /Level1 false def | ||||
| /Level3 false def | ||||
| /Rounded true def | ||||
| /ClipToBoundingBox false def | ||||
| /SuppressPDFMark false def | ||||
| @ -29,11 +30,11 @@ gnudict begin | ||||
| % | ||||
| /vshift -73 def | ||||
| /dl1 { | ||||
|   10.0 Dashlength mul mul | ||||
|   10.0 Dashlength userlinewidth gnulinewidth div mul mul mul | ||||
|   Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if | ||||
| } def | ||||
| /dl2 { | ||||
|   10.0 Dashlength mul mul | ||||
|   10.0 Dashlength userlinewidth gnulinewidth div mul mul mul | ||||
|   Rounded { currentlinewidth 0.75 mul add } if | ||||
| } def | ||||
| /hpt_ 31.5 def | ||||
| @ -47,7 +48,7 @@ gnudict begin | ||||
|   } if | ||||
| } def | ||||
| % | ||||
| % Gnuplot Prolog Version 4.6 (September 2012) | ||||
| % Gnuplot Prolog Version 5.1 (Oct 2015) | ||||
| % | ||||
| %/SuppressPDFMark true def | ||||
| % | ||||
| @ -64,11 +65,11 @@ gnudict begin | ||||
| /vpt2 vpt 2 mul def | ||||
| /hpt2 hpt 2 mul def | ||||
| /Lshow {currentpoint stroke M 0 vshift R  | ||||
| 	Blacktext {gsave 0 setgray show grestore} {show} ifelse} def | ||||
| 	Blacktext {gsave 0 setgray textshow grestore} {textshow} ifelse} def | ||||
| /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R | ||||
| 	Blacktext {gsave 0 setgray show grestore} {show} ifelse} def | ||||
| 	Blacktext {gsave 0 setgray textshow grestore} {textshow} ifelse} def | ||||
| /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R  | ||||
| 	Blacktext {gsave 0 setgray show grestore} {show} ifelse} def | ||||
| 	Blacktext {gsave 0 setgray textshow grestore} {textshow} ifelse} def | ||||
| /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def | ||||
|   /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def | ||||
| /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} | ||||
| @ -82,7 +83,7 @@ gnudict begin | ||||
| /PL {stroke userlinewidth setlinewidth | ||||
| 	Rounded {1 setlinejoin 1 setlinecap} if} def | ||||
| 3.8 setmiterlimit | ||||
| % Default Line colors | ||||
| % Classic Line colors (version 5.0) | ||||
| /LCw {1 1 1} def | ||||
| /LCb {0 0 0} def | ||||
| /LCa {0 0 0} def | ||||
| @ -95,19 +96,21 @@ gnudict begin | ||||
| /LC6 {0 0 0} def | ||||
| /LC7 {1 0.3 0} def | ||||
| /LC8 {0.5 0.5 0.5} def | ||||
| % Default Line Types | ||||
| % Default dash patterns (version 5.0) | ||||
| /LTB {BL [] LCb DL} def | ||||
| /LTw {PL [] 1 setgray} def | ||||
| /LTb {BL [] LCb DL} def | ||||
| /LTb {PL [] LCb DL} def | ||||
| /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def | ||||
| /LT0 {PL [] LC0 DL} def | ||||
| /LT1 {PL [4 dl1 2 dl2] LC1 DL} def | ||||
| /LT2 {PL [2 dl1 3 dl2] LC2 DL} def | ||||
| /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def | ||||
| /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def | ||||
| /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def | ||||
| /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def | ||||
| /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def | ||||
| /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def | ||||
| /LT1 {PL [2 dl1 3 dl2] LC1 DL} def | ||||
| /LT2 {PL [1 dl1 1.5 dl2] LC2 DL} def | ||||
| /LT3 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC3 DL} def | ||||
| /LT4 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def | ||||
| /LT5 {PL [4 dl1 2 dl2] LC5 DL} def | ||||
| /LT6 {PL [1.5 dl1 1.5 dl2 1.5 dl1 1.5 dl2 1.5 dl1 6 dl2] LC6 DL} def | ||||
| /LT7 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC7 DL} def | ||||
| /LT8 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC8 DL} def | ||||
| /SL {[] 0 setdash} def | ||||
| /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def | ||||
| /Dia {stroke [] 0 setdash 2 copy vpt add M | ||||
|   hpt neg vpt neg V hpt vpt neg V | ||||
| @ -329,9 +332,14 @@ gnudict begin | ||||
| % | ||||
| /languagelevel where | ||||
|  {pop languagelevel} {1} ifelse | ||||
|  2 lt | ||||
| 	{/InterpretLevel1 true def} | ||||
| 	{/InterpretLevel1 Level1 def} | ||||
| dup 2 lt | ||||
| 	{/InterpretLevel1 true def | ||||
| 	 /InterpretLevel3 false def} | ||||
| 	{/InterpretLevel1 Level1 def | ||||
| 	 2 gt | ||||
| 	    {/InterpretLevel3 Level3 def} | ||||
| 	    {/InterpretLevel3 false def} | ||||
| 	 ifelse } | ||||
|  ifelse | ||||
| % | ||||
| % PostScript level 2 pattern fill definitions | ||||
| @ -420,6 +428,7 @@ Level1 {Level1PatternFill} {Level2PatternFill} ifelse | ||||
| /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont | ||||
| dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall | ||||
| currentdict end definefont pop | ||||
| % | ||||
| Level1 SuppressPDFMark or  | ||||
| {} { | ||||
| /SDict 10 dict def | ||||
| @ -429,14 +438,42 @@ systemdict /pdfmark known not { | ||||
| SDict begin [ | ||||
|   /Title (pointprocessscetchB.tex) | ||||
|   /Subject (gnuplot plot) | ||||
|   /Creator (gnuplot 4.6 patchlevel 4) | ||||
|   /Author (benda) | ||||
|   /Creator (gnuplot 5.0 patchlevel 6) | ||||
|   /Author (grewe) | ||||
| %  /Producer (gnuplot) | ||||
| %  /Keywords () | ||||
|   /CreationDate (Mon Nov 26 17:57:49 2018) | ||||
|   /CreationDate (Thu Oct 17 14:13:46 2019) | ||||
|   /DOCINFO pdfmark | ||||
| end | ||||
| } ifelse | ||||
| % | ||||
| % Support for boxed text - Ethan A Merritt May 2005 | ||||
| % | ||||
| /InitTextBox { userdict /TBy2 3 -1 roll put userdict /TBx2 3 -1 roll put | ||||
|            userdict /TBy1 3 -1 roll put userdict /TBx1 3 -1 roll put | ||||
| 	   /Boxing true def } def | ||||
| /ExtendTextBox { Boxing | ||||
|     { gsave dup false charpath pathbbox | ||||
|       dup TBy2 gt {userdict /TBy2 3 -1 roll put} {pop} ifelse | ||||
|       dup TBx2 gt {userdict /TBx2 3 -1 roll put} {pop} ifelse | ||||
|       dup TBy1 lt {userdict /TBy1 3 -1 roll put} {pop} ifelse | ||||
|       dup TBx1 lt {userdict /TBx1 3 -1 roll put} {pop} ifelse | ||||
|       grestore } if } def | ||||
| /PopTextBox { newpath TBx1 TBxmargin sub TBy1 TBymargin sub M | ||||
|                TBx1 TBxmargin sub TBy2 TBymargin add L | ||||
| 	       TBx2 TBxmargin add TBy2 TBymargin add L | ||||
| 	       TBx2 TBxmargin add TBy1 TBymargin sub L closepath } def | ||||
| /DrawTextBox { PopTextBox stroke /Boxing false def} def | ||||
| /FillTextBox { gsave PopTextBox 1 1 1 setrgbcolor fill grestore /Boxing false def} def | ||||
| 0 0 0 0 InitTextBox | ||||
| /TBxmargin 20 def | ||||
| /TBymargin 20 def | ||||
| /Boxing false def | ||||
| /textshow { ExtendTextBox Gshow } def | ||||
| % | ||||
| % redundant definitions for compatibility with prologue.ps older than 5.0.2 | ||||
| /LTB {BL [] LCb DL} def | ||||
| /LTb {PL [] LCb DL} def | ||||
| end | ||||
| %%EndProlog | ||||
| %%Page: 1 1 | ||||
| @ -450,10 +487,9 @@ newpath | ||||
| 2.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 1.000 UP | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| LTb | ||||
| 1.000 UL | ||||
| LTb | ||||
| gsave 6208 3165 N 0 -32 V 121 32 V -121 32 V 0 -32 V 1 PolyFill | ||||
| @ -467,9 +503,11 @@ gsave 6208 3165 N 0 -32 V 121 32 V -121 32 V 0 -32 V 1 PolyFill | ||||
| stroke | ||||
| 2.000 UL | ||||
| LTb | ||||
| 0.00 0.00 0.00 C 10.000 UL | ||||
| LT0 | ||||
| LC0 setrgbcolor | ||||
| 0.00 0.00 0.00 C % Begin plot #1 | ||||
| 10.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 910 3029 M | ||||
| 0 272 V | ||||
| 502 -272 R | ||||
| @ -488,18 +526,22 @@ LC0 setrgbcolor | ||||
| 0 272 V | ||||
| 5685 3029 M | ||||
| 0 272 V | ||||
| 1.000 UP | ||||
| stroke | ||||
| LTw | ||||
| % End plot #1 | ||||
| 2.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 1.000 UP | ||||
| 2.000 UL | ||||
| LTb | ||||
| 0.00 0.00 0.00 C 2.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 1.000 UP | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| LTb | ||||
| 1.000 UL | ||||
| LTb | ||||
| gsave 6208 2043 N 0 -32 V 121 32 V -121 32 V 0 -32 V 1 PolyFill | ||||
| @ -510,76 +552,86 @@ gsave 6208 2043 N 0 -32 V 121 32 V -121 32 V 0 -32 V 1 PolyFill | ||||
| 0 -32 V | ||||
| -5680 0 R | ||||
| 5680 0 V | ||||
| stroke | ||||
| 1291 1929 M | ||||
| 121 32 V | ||||
| -121 32 V | ||||
| -260 -64 R | ||||
| -121 32 V | ||||
| 121 32 V | ||||
| 910 1961 M | ||||
| -260 0 R | ||||
| 910 1961 L | ||||
| 121 -32 V | ||||
| -121 32 R | ||||
| 502 0 V | ||||
| 590 -32 R | ||||
| stroke | ||||
| 2002 1929 M | ||||
| 121 32 V | ||||
| -121 32 V | ||||
| -469 -64 R | ||||
| -121 32 V | ||||
| 121 32 V | ||||
| -121 -32 R | ||||
| -469 0 R | ||||
| -121 -32 V | ||||
| 121 -32 V | ||||
| -121 32 R | ||||
| 711 0 V | ||||
| 206 -22 R | ||||
| stroke | ||||
| 2329 1939 M | ||||
| 84 22 V | ||||
| -84 22 V | ||||
| -122 -44 R | ||||
| -84 22 V | ||||
| 84 22 V | ||||
| -84 -22 R | ||||
| -122 0 R | ||||
| -84 -22 V | ||||
| 84 -22 V | ||||
| -84 22 R | ||||
| 290 0 V | ||||
| 216 -23 R | ||||
| stroke | ||||
| 2629 1938 M | ||||
| 88 23 V | ||||
| -88 23 V | ||||
| -128 -46 R | ||||
| -88 23 V | ||||
| 88 23 V | ||||
| -88 -23 R | ||||
| -128 0 R | ||||
| -88 -23 V | ||||
| 88 -23 V | ||||
| -88 23 R | ||||
| 304 0 V | ||||
| 329 -32 R | ||||
| stroke | ||||
| 3046 1929 M | ||||
| 121 32 V | ||||
| -121 32 V | ||||
| -208 -64 R | ||||
| -121 32 V | ||||
| 121 32 V | ||||
| -121 -32 R | ||||
| -208 0 R | ||||
| -121 -32 V | ||||
| 121 -32 V | ||||
| -121 32 R | ||||
| 450 0 V | ||||
| 745 -32 R | ||||
| stroke | ||||
| 3912 1929 M | ||||
| 121 32 V | ||||
| -121 32 V | ||||
| -624 -64 R | ||||
| -121 32 V | ||||
| 121 32 V | ||||
| -121 -32 R | ||||
| -624 0 R | ||||
| -121 -32 V | ||||
| 121 -32 V | ||||
| -121 32 R | ||||
| 866 0 V | ||||
| 496 -32 R | ||||
| stroke | ||||
| 4529 1929 M | ||||
| 121 32 V | ||||
| -121 32 V | ||||
| -375 -64 R | ||||
| -121 32 V | ||||
| 121 32 V | ||||
| -121 -32 R | ||||
| -375 0 R | ||||
| -121 -32 V | ||||
| 121 -32 V | ||||
| -121 32 R | ||||
| 617 0 V | ||||
| 914 -32 R | ||||
| stroke | ||||
| 5564 1929 M | ||||
| 121 32 V | ||||
| -121 32 V | ||||
| -793 -64 R | ||||
| -121 32 V | ||||
| 121 32 V | ||||
| -121 -32 R | ||||
| -793 0 R | ||||
| -121 -32 V | ||||
| 121 -32 V | ||||
| -121 32 R | ||||
| 1035 0 V | ||||
| stroke | ||||
| 2.000 UL | ||||
| LTb | ||||
| 0.00 0.00 0.00 C 10.000 UL | ||||
| LT0 | ||||
| LC0 setrgbcolor | ||||
| 0.00 0.00 0.00 C % Begin plot #1 | ||||
| 10.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 910 1907 M | ||||
| 0 272 V | ||||
| 502 -272 R | ||||
| @ -598,47 +650,60 @@ LC0 setrgbcolor | ||||
| 0 272 V | ||||
| 5685 1907 M | ||||
| 0 272 V | ||||
| 1.000 UP | ||||
| stroke | ||||
| LTw | ||||
| % End plot #1 | ||||
| 2.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 1.000 UP | ||||
| 2.000 UL | ||||
| LTb | ||||
| 0.00 0.00 0.00 C 2.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 528 268 M | ||||
| -63 0 V | ||||
| stroke | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 528 460 M | ||||
| -63 0 V | ||||
| stroke | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 528 652 M | ||||
| -63 0 V | ||||
| stroke | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 528 844 M | ||||
| -63 0 V | ||||
| stroke | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 528 1036 M | ||||
| -63 0 V | ||||
| stroke | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 528 1228 M | ||||
| -63 0 V | ||||
| stroke | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 2.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 528 1276 M | ||||
| 528 220 L | ||||
| 5801 0 R | ||||
| @ -646,9 +711,7 @@ LCb setrgbcolor | ||||
| -5801 0 R | ||||
| 1.000 UP | ||||
| stroke | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| LTb | ||||
| 1.000 UL | ||||
| LTb | ||||
| gsave 6208 268 N 0 -32 V 121 32 V -121 32 V 0 -32 V 1 PolyFill | ||||
| @ -662,9 +725,11 @@ gsave 6208 268 N 0 -32 V 121 32 V -121 32 V 0 -32 V 1 PolyFill | ||||
| stroke | ||||
| 2.000 UL | ||||
| LTb | ||||
| 0.00 0.00 0.00 C 3.000 UL | ||||
| LT0 | ||||
| LC0 setrgbcolor | ||||
| 0.00 0.00 0.00 C % Begin plot #1 | ||||
| 3.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 528 268 M | ||||
| 382 0 V | ||||
| 0 96 R | ||||
| @ -685,11 +750,15 @@ LC0 setrgbcolor | ||||
| 1035 0 V | ||||
| 0 96 R | ||||
| 533 0 V | ||||
| 1.500 UP | ||||
| stroke | ||||
| LTw | ||||
| % End plot #1 | ||||
| % Begin plot #2 | ||||
| 1.500 UP | ||||
| 2.000 UL | ||||
| LT0 | ||||
| LC0 setrgbcolor | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 910 268 CircleF | ||||
| 1412 364 CircleF | ||||
| 2123 460 CircleF | ||||
| @ -699,10 +768,14 @@ LC0 setrgbcolor | ||||
| 4033 844 CircleF | ||||
| 4650 940 CircleF | ||||
| 5685 1036 CircleF | ||||
| LTw | ||||
| % End plot #2 | ||||
| % Begin plot #3 | ||||
| 1.000 UP | ||||
| 2.000 UL | ||||
| LT0 | ||||
| LC0 setrgbcolor | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 1.00 1.00 1.00 C 910 268 CircleF | ||||
| 1412 364 CircleF | ||||
| 2123 460 CircleF | ||||
| @ -712,10 +785,14 @@ LC0 setrgbcolor | ||||
| 4033 844 CircleF | ||||
| 4650 940 CircleF | ||||
| 5685 1036 CircleF | ||||
| LTw | ||||
| % End plot #3 | ||||
| % Begin plot #4 | ||||
| 1.500 UP | ||||
| 2.000 UL | ||||
| LT0 | ||||
| LC0 setrgbcolor | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 0.00 0.00 0.00 C 910 364 CircleF | ||||
| 1412 460 CircleF | ||||
| 2123 556 CircleF | ||||
| @ -725,10 +802,15 @@ LC0 setrgbcolor | ||||
| 4033 940 CircleF | ||||
| 4650 1036 CircleF | ||||
| 5685 1132 CircleF | ||||
| 1.000 UP | ||||
| LTw | ||||
| % End plot #4 | ||||
| 2.000 UL | ||||
| LTb | ||||
| LCb setrgbcolor | ||||
| [] 0 setdash | ||||
| 1.000 UP | ||||
| 2.000 UL | ||||
| LTb | ||||
| 0.00 0.00 0.00 C stroke | ||||
| grestore | ||||
| end | ||||
|  | ||||
										
											Binary file not shown.
										
									
								
							
		Reference in New Issue
	
	Block a user