finished solution for population vector
This commit is contained in:
parent
0501b89444
commit
2fa3bdd38d
@ -55,6 +55,8 @@
|
||||
\texttt{spikes} variables of the \texttt{population*.mat} files.
|
||||
The \texttt{angle} variable holds the angle of the presented bar.
|
||||
|
||||
NOTE: the orientation is angle plu 90 degree!!!!!!
|
||||
|
||||
\begin{parts}
|
||||
\part Illustrate the spiking activity of the V1 cells in response
|
||||
to different orientation angles of the bars by means of spike
|
||||
@ -97,6 +99,9 @@
|
||||
\end{parts}
|
||||
\end{questions}
|
||||
|
||||
NOTE: change data generation such that the phase variable is indeed
|
||||
the maximum response and not the minumum!
|
||||
|
||||
\end{document}
|
||||
|
||||
gains and angles of the 6 neurons:
|
||||
|
@ -16,6 +16,7 @@ end
|
||||
close all
|
||||
cosine = @(p,xdata)0.5*p(1).*(1.0-cos(2.0*pi*(xdata/180.0-p(2))));
|
||||
files = dir('../unit*.mat');
|
||||
phases = zeros(length(files), 1);
|
||||
figure()
|
||||
for j = 1:length(files)
|
||||
file = files(j);
|
||||
@ -31,7 +32,11 @@ for j = 1:length(files)
|
||||
p0 = [mr, angles(maxi)/180.0-0.5];
|
||||
%p = p0;
|
||||
p = lsqcurvefit(cosine, p0, angles, rates');
|
||||
phase = p(2)*180.0
|
||||
phase = p(2)*180.0 + 90.0;
|
||||
if phase > 180.0
|
||||
phase = phase - 180.0;
|
||||
end
|
||||
phases(j) = phase;
|
||||
subplot(2, 3, j);
|
||||
plot(angles, rates, 'b');
|
||||
hold on;
|
||||
@ -41,3 +46,73 @@ for j = 1:length(files)
|
||||
ylim([0.0 50.0])
|
||||
title(sprintf('unit %d', j))
|
||||
end
|
||||
|
||||
|
||||
%% read out:
|
||||
a = load('../population04.mat');
|
||||
spikes = a.spikes;
|
||||
angle = a.angle;
|
||||
unitphases = a.phases*180.0 + 90.0;
|
||||
unitphases(unitphases>180.0) = unitphases(unitphases>180.0) - 180.0;
|
||||
figure();
|
||||
subplot(1, 3, 1);
|
||||
angleestimates1 = zeros(size(spikes, 2), 1);
|
||||
angleestimates2 = zeros(size(spikes, 2), 1);
|
||||
for j = 1:size(spikes, 2)
|
||||
rates = zeros(size(spikes, 1), 1);
|
||||
for k = 1:size(spikes, 1)
|
||||
r = firingrate(spikes(k, j), 0.0, 0.2);
|
||||
rates(k) = r;
|
||||
end
|
||||
[x, inx] = sort(phases);
|
||||
plot(phases(inx), rates(inx), '-o');
|
||||
hold on;
|
||||
angleestimates1(j) = popvecangle(phases, rates);
|
||||
[m, i] = max(rates);
|
||||
angleestimates2(j) = phases(i);
|
||||
end
|
||||
hold off;
|
||||
subplot(1, 3, 2);
|
||||
hist(angleestimates1);
|
||||
subplot(1, 3, 3);
|
||||
hist(angleestimates2);
|
||||
angle
|
||||
mean(angleestimates1)
|
||||
mean(angleestimates2)
|
||||
|
||||
|
||||
%% read out robustness:
|
||||
files = dir('../population*.mat');
|
||||
angles = zeros(length(files), 1);
|
||||
e1m = zeros(length(files), 1);
|
||||
e1s = zeros(length(files), 1);
|
||||
e2m = zeros(length(files), 1);
|
||||
e2s = zeros(length(files), 1);
|
||||
for i = 1:length(files)
|
||||
file = files(i);
|
||||
a = load(strcat('../', file.name));
|
||||
spikes = a.spikes;
|
||||
angle = a.angle;
|
||||
angleestimates1 = zeros(size(spikes, 2), 1);
|
||||
angleestimates2 = zeros(size(spikes, 2), 1);
|
||||
for j = 1:size(spikes, 2)
|
||||
rates = zeros(size(spikes, 1), 1);
|
||||
for k = 1:size(spikes, 1)
|
||||
r = firingrate(spikes(k, j), 0.0, 0.2);
|
||||
rates(k) = r;
|
||||
end
|
||||
angleestimates1(j) = popvecangle(phases, rates);
|
||||
[m, inx] = max(rates);
|
||||
angleestimates2(j) = phases(inx);
|
||||
end
|
||||
angles(i) = angle;
|
||||
e1m(i) = mean(angleestimates1);
|
||||
e1s(i) = std(angleestimates1);
|
||||
e2m(i) = mean(angleestimates2);
|
||||
e2s(i) = std(angleestimates2);
|
||||
end
|
||||
figure();
|
||||
subplot(1, 2, 1);
|
||||
scatter(angles, e1m);
|
||||
subplot(1, 2, 2);
|
||||
scatter(angles, e2m);
|
||||
|
13
projects/project_populationvector/solution/popvecangle.m
Normal file
13
projects/project_populationvector/solution/popvecangle.m
Normal file
@ -0,0 +1,13 @@
|
||||
function angle = popvecangle(phases, rates)
|
||||
% estimate population vector
|
||||
vecs = zeros(2, length(phases));
|
||||
norm = sum(rates);
|
||||
vecs(1, :) = rates.*cos(2*pi*phases/180.0)/norm;
|
||||
vecs(2, :) = rates.*sin(2*pi*phases/180.0)/norm;
|
||||
mvec = mean(vecs, 2);
|
||||
angle = atan2(mvec(2), mvec(1));
|
||||
angle = angle/2/pi*180.0;
|
||||
if angle < 0
|
||||
angle = angle + 180.0;
|
||||
end
|
||||
end
|
Reference in New Issue
Block a user