diff --git a/projects/project_stimulus_reconstruction/Makefile b/projects/project_stimulus_reconstruction/Makefile new file mode 100644 index 0000000..dad25ce --- /dev/null +++ b/projects/project_stimulus_reconstruction/Makefile @@ -0,0 +1,10 @@ +latex: + pdflatex *.tex > /dev/null + pdflatex *.tex > /dev/null + +clean: + rm -rf *.log *.aux *.zip *.out auto + rm -f `basename *.tex .tex`.pdf + +zip: latex + zip `basename *.tex .tex`.zip *.pdf *.dat *.mat diff --git a/projects/project_stimulus_reconstruction/stimulus_reconstruction.tex b/projects/project_stimulus_reconstruction/stimulus_reconstruction.tex new file mode 100755 index 0000000..5698713 --- /dev/null +++ b/projects/project_stimulus_reconstruction/stimulus_reconstruction.tex @@ -0,0 +1,58 @@ +\documentclass[addpoints,11pt]{exam} +\usepackage{url} +\usepackage{color} +\usepackage{hyperref} + +\pagestyle{headandfoot} +\runningheadrule +\firstpageheadrule +\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014 + -- 11/06/2014} +%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014} +\firstpagefooter{}{}{} +\runningfooter{}{}{} +\pointsinmargin +\bracketedpoints + +%\printanswers +%\shadedsolutions + + +\begin{document} +%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%% +\sffamily +% \begin{flushright} +% \gradetable[h][questions] +% \end{flushright} + +\begin{center} + \input{../disclaimer.tex} +\end{center} + +%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%% +\section*{Reverse reconstruction of the stimulus evoking neuronal responses.} +During the course we have used the Spike-Triggered-Average to +reconstruct the stimulus +\begin{questions} + \question . + \begin{parts} + \part Estimate the STA and plot it for each of the cells. + \part Implement a function that estimates the reconstruction + error using the mean-square-error and express it relative to the + variance of the original stimulus. + \begin{equation} + err = \frac{1}{N} \cdot \displaystyle\sum^{N}_{i=1}(x_i - \bar{x}), + \end{equation} + with $N$ the number of data points, $x_i$ the current value and + $\bar{x}$, the average of all $x$. + \part Analyze the robustness of the reconstruction. Estimate + the STA with less and less data and estimate the reconstruction + error. + \part Plot the reconstruction error as a function of the data + amount used to estimate the STA. + \part Apply the STA estimated for one neuron to reconstruct + the stimulus another neuron has seen. + \end{parts} +\end{questions} + +\end{document}