new \entermde function for adding terms to both indices
This commit is contained in:
parent
16df08f9b2
commit
2a2e02b37e
@ -18,8 +18,9 @@
|
||||
|
||||
\section{TODO}
|
||||
\begin{itemize}
|
||||
\item Proper introduction of confidence intervals
|
||||
\item Proper introduction of statistical tests (significance, power, etc.)
|
||||
\item This chapter easily covers two lectures:
|
||||
\item 1. Bootstrapping with a proper introduction of of confidence intervals
|
||||
\item 2. Permutation test with a proper introduction of statistical tests (dsitrubution of nullhypothesis significance, power, etc.)
|
||||
\end{itemize}
|
||||
|
||||
\end{document}
|
||||
|
@ -33,7 +33,7 @@ population. Rather, we draw samples (\enterm{simple random sample}
|
||||
then estimate a statistical measure of interest (e.g. the average
|
||||
length of the pickles) within this sample and hope that it is a good
|
||||
approximation of the unknown and immeasurable true average length of
|
||||
the population (\endeterm{Populationsparameter}{population
|
||||
the population (\entermde{Populationsparameter}{population
|
||||
parameter}). We apply statistical methods to find out how precise
|
||||
this approximation is.
|
||||
|
||||
@ -71,17 +71,18 @@ distribution of average values around the true mean of the population
|
||||
(\subfigref{bootstrapsamplingdistributionfig}{b}).
|
||||
|
||||
Alternatively, we can use \enterm{bootstrapping}
|
||||
(\determ{Bootstrap-Verfahren}) to generate new samples from one set of
|
||||
measurements (\endeterm{Resampling}{resampling}). From these
|
||||
bootstrapped samples we compute the desired statistical measure and
|
||||
estimate their distribution (\endeterm{Bootstrapverteilung}{bootstrap
|
||||
distribution}, \subfigref{bootstrapsamplingdistributionfig}{c}).
|
||||
Interestingly, this distribution is very similar to the sampling
|
||||
distribution regarding its width. The only difference is that the
|
||||
bootstrapped values are distributed around the measure of the original
|
||||
sample and not the one of the statistical population. We can use the
|
||||
bootstrap distribution to draw conclusion regarding the precision of
|
||||
our estimation (e.g. standard errors and confidence intervals).
|
||||
(\determ[Bootstrap!Verfahren]{Bootstrapverfahren}) to generate new
|
||||
samples from one set of measurements
|
||||
(\entermde{Resampling}{resampling}). From these bootstrapped samples
|
||||
we compute the desired statistical measure and estimate their
|
||||
distribution (\entermde{Bootstrap!Verteilung}{bootstrap distribution},
|
||||
\subfigref{bootstrapsamplingdistributionfig}{c}). Interestingly, this
|
||||
distribution is very similar to the sampling distribution regarding
|
||||
its width. The only difference is that the bootstrapped values are
|
||||
distributed around the measure of the original sample and not the one
|
||||
of the statistical population. We can use the bootstrap distribution
|
||||
to draw conclusion regarding the precision of our estimation (e.g.
|
||||
standard errors and confidence intervals).
|
||||
|
||||
Bootstrapping methods create bootstrapped samples from a SRS by
|
||||
resampling. The bootstrapped samples are used to estimate the sampling
|
||||
@ -140,8 +141,8 @@ distribution is the standard error of the mean.
|
||||
\section{Permutation tests}
|
||||
Statistical tests ask for the probability of a measured value to
|
||||
originate from a null hypothesis. Is this probability smaller than the
|
||||
desired \endeterm{Signifikanz}{significance level}, the
|
||||
\endeterm{Nullhypothese}{null hypothesis} may be rejected.
|
||||
desired \entermde{Signifikanz}{significance level}, the
|
||||
\entermde{Nullhypothese}{null hypothesis} may be rejected.
|
||||
|
||||
Traditionally, such probabilities are taken from theoretical
|
||||
distributions which are based on assumptions about the data. Thus the
|
||||
@ -166,15 +167,15 @@ while we conserve all other statistical properties of the data.
|
||||
\end{figure}
|
||||
|
||||
A good example for the application of a
|
||||
\endeterm{Permutationstest}{permutaion test} is the statistical
|
||||
assessment of \endeterm[correlation]{Korrelation}{correlations}. Given
|
||||
\entermde{Permutationstest}{permutaion test} is the statistical
|
||||
assessment of \entermde[correlation]{Korrelation}{correlations}. Given
|
||||
are measured pairs of data points $(x_i, y_i)$. By calculating the
|
||||
\endeterm[correlation!correlation
|
||||
\entermde[correlation!correlation
|
||||
coefficient]{Korrelation!Korrelationskoeffizient}{correlation
|
||||
coefficient} we can quantify how strongly $y$ depends on $x$. The
|
||||
correlation coefficient alone, however, does not tell whether the
|
||||
correlation is significantly different from a random correlation. The
|
||||
\endeterm[]{Nullhypothese}{null hypothesis} for such a situation is that
|
||||
\entermde{Nullhypothese}{null hypothesis} for such a situation is that
|
||||
$y$ does not depend on $x$. In order to perform a permutation test, we
|
||||
need to destroy the correlation by permuting the $(x_i, y_i)$ pairs,
|
||||
i.e. we rearrange the $x_i$ and $y_i$ values in a random
|
||||
|
24
header.tex
24
header.tex
@ -36,8 +36,7 @@
|
||||
\usepackage[makeindex]{splitidx}
|
||||
\makeindex
|
||||
\usepackage[totoc]{idxlayout}
|
||||
\newindex[\tr{Glossary}{Fachbegriffe}]{term}
|
||||
\newindex[Englische Fachbegriffe]{enterm}
|
||||
\newindex[Glossary]{enterm}
|
||||
\newindex[Deutsche Fachbegriffe]{determ}
|
||||
\newindex[\tr{MATLAB code}{MATLAB Code}]{mcode}
|
||||
\newindex[\tr{Python code}{Python Code}]{pcode}
|
||||
@ -214,16 +213,25 @@
|
||||
\usepackage{ifthen}
|
||||
|
||||
% \enterm[english index entry]{<english term>}
|
||||
\newcommand{\enterm}[2][]{\tr{\textit{#2}}{``#2''}\ifthenelse{\equal{#1}{}}{\tr{\protect\sindex[term]{#2}}{\protect\sindex[enterm]{#2}}}{\tr{\protect\sindex[term]{#1}}{\protect\sindex[enterm]{#1}}}}
|
||||
% typeset the term in italics and add it (or the optional argument) to
|
||||
% the english index.
|
||||
\newcommand{\enterm}[2][]{\textit{#2}\ifthenelse{\equal{#1}{}}{\protect\sindex[enterm]{#2}}{\protect\sindex[enterm]{#1}}}
|
||||
|
||||
% \endeterm[english index entry]{<german index entry>}{<english term>}
|
||||
\newcommand{\endeterm}[3][]{\tr{\textit{#3}}{``#3''}\ifthenelse{\equal{#1}{}}{\tr{\protect\sindex[term]{#3}}{\protect\sindex[enterm]{#3}}}{\tr{\protect\sindex[term]{#1}}{\protect\sindex[enterm]{#1}}}\protect\sindex[determ]{#2}}
|
||||
% typeset the english term in italics and add it (or the first
|
||||
% optional argument) to the english index. In addition add the german
|
||||
% index entry to the german index without printing it.
|
||||
\newcommand{\entermde}[3][]{\textit{#3}\ifthenelse{\equal{#1}{}}{\protect\sindex[enterm]{#3}}{\protect\sindex[enterm]{#1}}\protect\sindex[determ]{#2}}
|
||||
|
||||
% \determ[index entry]{<german term>}
|
||||
\newcommand{\determ}[2][]{\tr{``#2''}{\textit{#2}}\ifthenelse{\equal{#1}{}}{\tr{\protect\sindex[determ]{#2}}{\protect\sindex[term]{#2}}}{\tr{\protect\sindex[determ]{#1}}{\protect\sindex[term]{#1}}}}
|
||||
% typeset the term in quotes and add it (or the optional argument) to
|
||||
% the german index.
|
||||
\newcommand{\determ}[2][]{``#2''\ifthenelse{\equal{#1}{}}{\protect\sindex[determ]{#2}}{\protect\sindex[determ]{#1}}}
|
||||
|
||||
% \codeterm[index entry]{<code>}
|
||||
\newcommand{\codeterm}[2][]{\textit{#2}\ifthenelse{\equal{#1}{}}{\protect\sindex[term]{#2}}{\protect\sindex[term]{#1}}}
|
||||
% typeset the term in italics and add it (or the optional argument) to
|
||||
% the english and the german index.
|
||||
\newcommand{\codeterm}[2][]{\textit{#2}\ifthenelse{\equal{#1}{}}{\protect\sindex[enterm]{#2}\protect\sindex[determ]{#2}}{\protect\sindex[enterm]{#1}\protect\sindex[determ]{#1}}}
|
||||
|
||||
\newcommand{\file}[1]{\texttt{#1}}
|
||||
|
||||
@ -242,10 +250,10 @@
|
||||
% typeset code inline:
|
||||
\newcommand{\varcode}[1]{\setlength{\fboxsep}{0.5ex}\colorbox{codeback}{\texttt{#1\protect\rule[-0.1ex]{0pt}{1.6ex}}}}
|
||||
|
||||
% type set code and add it to the python index:
|
||||
% typeset code and add it to the python index:
|
||||
\newcommand{\pcode}[2][]{\varcode{#2}\ifthenelse{\equal{#1}{}}{\protect\sindex[pcode]{#2}}{\protect\sindex[pcode]{#1}}}
|
||||
|
||||
% type set code and add it to the matlab index:
|
||||
% typeset code and add it to the matlab index:
|
||||
\newcommand{\mcode}[2][]{\varcode{#2}\ifthenelse{\equal{#1}{}}{\protect\sindex[mcode]{#2}}{\protect\sindex[mcode]{#1}}}
|
||||
|
||||
% XXX typeset code and put it into matlab index:
|
||||
|
@ -85,6 +85,8 @@
|
||||
%\renewcommand{\texinputpath}{spectral/lecture/}
|
||||
%\include{spectral/lecture/spectral}
|
||||
|
||||
% add chapter on ROC curves
|
||||
|
||||
% add chapter on digital filtering
|
||||
|
||||
% add chapter on event detection
|
||||
@ -119,10 +121,9 @@
|
||||
\printallsolutions
|
||||
|
||||
%%%% indices: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\printindex[term]
|
||||
\printindex[enterm]
|
||||
|
||||
\printindex[determ] % for english text
|
||||
% \printindex[enterm] % for german text
|
||||
\printindex[determ]
|
||||
|
||||
%\setindexprenote{Some explanations.}
|
||||
%\printindex[pcode]
|
||||
|
@ -16,6 +16,14 @@
|
||||
|
||||
\include{statistics}
|
||||
|
||||
\section{TODO}
|
||||
\begin{itemize}
|
||||
\item The content of this lecture easily covers two lectures!
|
||||
\item 1. mymedian and debugging, rolling a die, normalized histogram
|
||||
\item 2. densities, quantiles, cumulative distribution, kernel histogram
|
||||
\item Adapt the exercises to that!
|
||||
\end{itemize}
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
@ -97,7 +97,7 @@ such that one half of the data is not greater and the other half is
|
||||
not smaller than the median (\figref{medianfig}).
|
||||
|
||||
\begin{exercise}{mymedian.m}{}
|
||||
Write a function \code{mymedian()} that computes the median of a vector.
|
||||
Write a function \varcode{mymedian()} that computes the median of a vector.
|
||||
\end{exercise}
|
||||
|
||||
\matlab{} provides the function \code{median()} for computing the median.
|
||||
|
Reference in New Issue
Block a user