[simulations] added exercise randomnumbers

This commit is contained in:
Jan Benda 2019-12-27 21:15:46 +01:00
parent 6604261978
commit 2a0e1adff8
8 changed files with 85 additions and 61 deletions

View File

@ -1,8 +1,3 @@
% getting familiar with the randn() function:
randn(1, 3)
randn(3, 1)
randn(2, 4)
% simulate tiger weights:
mu = 220.0; % mean and ...
sigma = 40.0; % ... standard deviation of the tigers in kg

View File

@ -1,21 +1,5 @@
>> normaldata
ans =
-0.89120 1.19863 0.95487
ans =
-1.10001
0.79473
0.85979
ans =
-1.19206 0.58278 1.70286 -1.28122
-0.19966 -1.85623 0.17962 -0.19272
n=100:
m=218kg, std= 39kg
m=223kg, std= 39kg

View File

@ -0,0 +1,17 @@
% getting familiar with the rand() function:
rand(1, 3)
rand(3, 1)
rand(2, 4)
% three times the same sequence of 10 random numbers:
n = 10;
for k = 1:3
rand(1, n)
end
% serial corraltion at lag 1:
n = 10000;
x = rand(n, 1);
r1 = corr(x(1:end-1), x(2:end));
fprintf('correlation between subsequent random numbers: %.3f\n', r1);

View File

@ -0,0 +1,30 @@
>> randomnumbers
ans =
0.740875 0.193576 0.064584
ans =
0.061028
0.695705
0.177097
ans =
0.707430 0.404868 0.550246 0.393093
0.087565 0.473358 0.247850 0.161137
ans =
0.350969 0.340726 0.145924 0.769714 0.203317 0.066427 0.451685 0.959766 0.850558 0.642769
ans =
0.145262 0.175168 0.462693 0.089379 0.706870 0.353830 0.604305 0.405531 0.804180 0.253496
ans =
0.647119 0.468534 0.484289 0.586001 0.851326 0.972554 0.014812 0.906628 0.982962 0.575003
correlation between subsequent random numbers: 0.003

View File

@ -2,7 +2,7 @@ import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from plotstyle import colors, cm_size, show_spines, set_xlabel, set_ylabel, bar_fac
from plotstyle import *
if __name__ == "__main__":
# wikipedia:
@ -21,7 +21,7 @@ if __name__ == "__main__":
ax1 = fig.add_subplot(spec[0, 0])
show_spines(ax1, 'lb')
ax1.scatter(indices, data, c=colors['blue'], edgecolor='white', s=50)
set_xlabel(ax1, 'index')
set_xlabel(ax1, 'Index')
set_ylabel(ax1, 'Weight', 'kg')
ax1.set_xlim(-10, 310)
ax1.set_ylim(0, 370)
@ -35,7 +35,7 @@ if __name__ == "__main__":
bw = 20.0
h, b = np.histogram(data, np.arange(0, 401, bw))
ax2.barh(b[:-1], h/np.sum(h)/(b[1]-b[0]), fc=colors['yellow'], height=bar_fac*bw, align='edge')
set_xlabel(ax2, 'pdf', '1/kg')
set_xlabel(ax2, 'Pdf', '1/kg')
ax2.set_xlim(0, 0.012)
ax2.set_xticks([0, 0.005, 0.01])
ax2.set_xticklabels(['0', '0.005', '0.01'])

View File

@ -1,7 +1,7 @@
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from plotstyle import colors, cm_size, show_spines
from plotstyle import *
if __name__ == "__main__":
n = 21

View File

@ -51,8 +51,11 @@ exactly the same sequence of noise values. This is useful for plots
that involve some random numbers but should look the same whenever the
script is run.
\begin{exercise}{}{}
Generate three times the same sequence of 20 uniformly distributed
\begin{exercise}{randomnumbers.m}{randomnumbers.out}
First, read the documentation of the \varcode{rand()} function and
check its output for some (small) input arguments.
Generate three times the same sequence of 10 uniformly distributed
numbers using the \code{rand()} and \code{rng()} functions.
Generate 10\,000 uniformly distributed random numbers and compute
@ -109,17 +112,15 @@ mean we just add the desired mean $\mu$ to the random numbers:
\end{figure}
\begin{exercise}{normaldata.m}{normaldata.out}
First, read the documentation of the \varcode{randn()} function and
check its output for some (small) input arguments. Write a little
script that generates $n=100$ normally distributed data simulating
the weight of Bengal tiger males with mean 220\,kg and standard
deviation 40\,kg. Check the actual mean and standard deviation of
the generated data. Do this, let's say, five times using a
for-loop. Then increase $n$ to 10\,000 and run the code again. It is
so simple to measure the weight of 10\,000 tigers for getting a
really good estimate of their mean weight, isn't it? Finally plot
from the last generated data set of tiger weights the first 1000
values as a function of their index.
Write a little script that generates $n=100$ normally distributed
data simulating the weight of Bengal tiger males with mean 220\,kg
and standard deviation 40\,kg. Check the actual mean and standard
deviation of the generated data. Do this, let's say, five times
using a for-loop. Then increase $n$ to 10\,000 and run the code
again. It is so simple to measure the weight of 10\,000 tigers for
getting a really good estimate of their mean weight, isn't it?
Finally plot from the last generated data set of tiger weights the
first 1000 values as a function of their index.
\end{exercise}
\subsection{Other probability densities}
@ -136,12 +137,12 @@ gamma
\begin{figure}[t]
\includegraphics[width=1\textwidth]{staticnonlinearity}
\titlecaption{\label{staticnonlinearityfig} Generating data
fluctuating around a function.}{The open probability of the
mechontransducer channel in hair cells of the inner ear is a
saturating function of the deflection of hairs (left, red line).
Measured data will fluctuate around this function (blue dots).
Ideally the residuals (yellow histogram) are normally distributed
(right, red line).}
fluctuating around a function.}{The conductance of the
mechontransducer channels in hair cells of the inner ear is a
saturating function of the deflection of their hairs (left, red
line). Measured data will fluctuate around this function (blue
dots). Ideally the residuals (yellow histogram) are normally
distributed (right, red line).}
\end{figure}
Example: mechanotransduciton!

View File

@ -2,10 +2,10 @@ import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from plotstyle import colors, cm_size, show_spines, set_xlabel, set_ylabel, bar_fac
from plotstyle import *
def boltzmann(x, x0, k):
return 1.0/(1.0+np.exp(-k*(x-x0)))
return 8.0/(1.0+np.exp(-k*(x-x0)))
if __name__ == "__main__":
n = 50
@ -13,7 +13,7 @@ if __name__ == "__main__":
xmax = 18.0
x0 = 2.0
k = 0.25
sigma = 0.08
sigma = 0.6
rng = np.random.RandomState(15281)
x = np.linspace(xmin, xmax, n)
y = boltzmann(x, x0, k) + sigma*rng.randn(len(x))
@ -28,28 +28,25 @@ if __name__ == "__main__":
ax1.plot(xx, yy, colors['red'], lw=2)
ax1.scatter(x, y, c=colors['blue'], edgecolor='white', s=50)
set_xlabel(ax1, 'Hair deflection', 'nm')
set_ylabel(ax1, 'Open probability')
set_ylabel(ax1, 'Conductance', 'nS')
ax1.set_xlim(-20, 20)
ax1.set_ylim(-0.2, 1.17)
ax1.set_ylim(-1.5, 9.5)
ax1.set_xticks(np.arange(-20.0, 21.0, 10.0))
ax1.set_yticks(np.arange(-0.2, 1.1, 0.2))
ax1.set_yticks(np.arange(0, 9, 2))
ax2 = fig.add_subplot(spec[0, 1])
show_spines(ax2, 'lb')
xg = np.linspace(-1.0, 1.01, 200)
xg = np.linspace(-3.0, 3.01, 200)
yg = st.norm.pdf(xg, 0.0, sigma)
ax2.plot(xg, yg, colors['red'], lw=2)
bw = 0.05
h, b = np.histogram(y-boltzmann(x, x0, k), np.arange(-1.0, 1.01, bw))
bw = 0.25
h, b = np.histogram(y-boltzmann(x, x0, k), np.arange(-3.0, 3.01, bw))
ax2.bar(b[:-1], h/np.sum(h)/(b[1]-b[0]), fc=colors['yellow'], width=bar_fac*bw, align='edge')
set_xlabel(ax2, 'residuals', 'nm')
set_ylabel(ax2, 'pdf')
ax2.set_xlim(-0.3, 0.3)
ax2.set_ylim(0, 5.05)
#ax2.set_xticks([0, 0.005, 0.01])
#ax2.set_xticklabels(['0', '0.005', '0.01'])
#ax2.set_yticks(np.arange(0, 351, 100))
#ax2.set_yticklabels([])
set_xlabel(ax2, 'Residuals', 'nS')
set_ylabel(ax2, 'Pdf', '1/nS')
ax2.set_xlim(-2.5, 2.5)
ax2.set_ylim(0, 0.75)
ax2.set_yticks(np.arange(0, 0.75, 0.2))
fig.savefig("staticnonlinearity.pdf")
plt.close()