[pointprocesses] cleaned up code

This commit is contained in:
Jan Benda 2021-01-19 13:51:22 +01:00
parent 77b6666347
commit 25dd6ac2c7
12 changed files with 0 additions and 313 deletions

View File

@ -1,10 +0,0 @@
function pcn = colorednoisepdf( x, misi, epsilon, tau )
% returns the ISI pdf for PIF with colored noise drive
% x: the input ISI
% misis: the mean isi
% epsilon: a parameter
% tau: the correlation time of the noise
gamma1 = x/tau+exp(-x/tau)-1.0;
gamma2 = 1.0-exp(-x/tau);
pcn=exp(-(x-misi).^2./(4.0*epsilon*tau.^2.*gamma1)).*(((misi-x).*gamma2+2*gamma1*tau).^2./(2*gamma1*tau^2)-epsilon*(gamma2.^2-2*gamma1.*exp(-x/tau))) ./ (2*tau*sqrt(4*pi*epsilon*gamma1.^3));
end

View File

@ -1,24 +0,0 @@
% misi = 0.02;
% epsilon = 1.0;
% tau = 0.1;
x=0:0.002:0.1;
% pcn = colorednoisepdf( x, misi, epsilon, tau )+10.0*randn( size( x ) );
% plot( x, pcn );
spikes = lifouspikes( 10, 15, 50.0, 1.0, 1.0 );
isivec = isis( spikes );
misi = mean( isivec );
1.0/misi
isibins = 0:0.0005:0.1;
[ n, c ] = hist( isivec, isibins );
n = n / sum(n)/(isibins(2)-isibins(1));
bar( c, n );
beta0 = [ 1.0, 0.01 ];
b = nlinfit(c(1:end-2), n(1:end-2), @(b,x)(colorednoisepdf(x, misi, b(1), b(2))), beta0)
pcn = colorednoisepdf( x, misi, b(1), b(2) );
hold on
plot( x, pcn, 'r', 'LineWidth', 3 );
hold off

View File

@ -1,55 +0,0 @@
function [counts, bins] = counthist(spikes, w)
% computes count histogram and compare with Poisson distribution
%
% [counts, bins] = counthist(spikes, w)
%
% Arguments:
% spikes: a cell array of vectors of spike times in seconds
% w: observation window duration in seconds for computing the counts
%
% Returns:
% counts: the histogram of counts normalized to probabilities
% bins: the bin centers for the histogram
% collect spike counts:
tmax = spikes{1}(end);
n = [];
r = [];
for k = 1:length(spikes)
times = spikes{k};
% alternative 1: count the number of spikes in each window:
% for tk = 0:w:tmax-w
% nn = sum( ( times >= tk ) & ( times < tk+w ) );
% %nn = length( find( ( times >= tk ) & ( times < tk+w ) ) );
% n = [ n nn ];
% end
% alternative 2: use the hist function to do that!
tbins = 0.5*w:w:tmax-0.5*w;
nn = hist(times, tbins);
n = [ n nn ];
% the rate of the spikes:
rate = (length(times)-1)/(times(end) - times(1));
r = [ r rate ];
end
% histogram of spike counts:
maxn = max( n );
[counts, bins ] = hist( n, 0:1:maxn+10 );
% normalize to probabilities:
counts = counts / sum( counts );
% plot:
if nargout == 0
bar( bins, counts );
hold on;
% Poisson distribution:
rate = mean( r );
x = 0:1:maxn+10;
a = rate*w;
y = a.^x.*exp(-a)./factorial(x);
plot( x, y, 'r', 'LineWidth', 3 );
hold off;
xlabel( 'counts k' );
ylabel( 'P(k)' );
end
end

View File

@ -1,24 +0,0 @@
function isireturnmap( isis, lag2 )
% plot return maps for lag 1 and lag lag2
clf;
subplot( 1, 2, 1 );
lag = 1;
scatter( 1000.0*isis(1:end-lag)', 1000.0*isis(1+lag:end)', 'b', 'filled', 'MarkerEdgeColor', 'white' );
xlabel( 'ISI T_i [ms]' );
ylabel( 'ISI T_{i+1} [ms]' );
maxisi = max( isis );
maxy = ceil(maxisi/10)*10.0;
xlim( [0 1.5*maxy ])
ylim( [0 maxy ])
subplot( 1, 2, 2 );
lag = lag2;
scatter( 1000.0*isis(1:end-lag)', 1000.0*isis(1+lag:end)', 'b', 'filled', 'MarkerEdgeColor', 'white' );
xlabel( 'ISI T_i [ms]' );
ylabel( 'ISI T_{i+2} [ms]' );
xlim( [0 1.5*maxy ])
ylim( [0 maxy ])
end

View File

@ -1,100 +0,0 @@
%% load data:
clear all
% alternative 1:
% pro: no structs. contra: global unknown variables
load poisson.mat
whos
poissonspikes = spikes;
load pifou.mat;
pifouspikes = spikes;
load lifadapt.mat;
lifadaptspikes = spikes;
clear spikes;
% alternative 2:
% pro: clean code. contra: structs that we do not really know yet
clear all
x = load( 'poisson.mat' );
poissonspikes = x.spikes;
x = load( 'pifou.mat' );
pifouspikes = x.spikes;
x = load( 'lifadapt.mat' );
lifadaptspikes = x.spikes;
%% spike raster plots:
tmax = 1.0;
subplot(1, 3, 1);
spikeraster(poissonspikes, tmax);
title('Poisson');
subplot(1, 3, 2);
spikeraster(pifouspikes, tmax);
title('PIF OU');
subplot(1, 3, 3);
spikeraster(lifadaptspikes, tmax);
title('LIF adapt');
%% isi histograms:
maxisi = 300.0;
binwidth = 0.002;
subplot(1, 3, 1);
poissonisis = isis(poissonspikes);
isihist(poissonisis, binwidth);
xlim([0, maxisi])
title('Poisson');
subplot(1, 3, 2);
pifouisis = isis(pifouspikes);
isihist(pifouisis, binwidth);
xlim([0, maxisi])
title('PIF OU');
subplot(1, 3, 3);
lifadaptisis = isis(lifadaptspikes);
isihist(lifadaptisis, binwidth);
xlim([0, maxisi])
title('LIF adapt');
%% serial correlations:
maxlag = 10;
rrange = [-0.5, 1.05];
subplot(1, 3, 1);
isiserialcorr(poissonisis, maxlag);
ylim(rrange)
title('Poisson');
subplot(1, 3, 2);
isiserialcorr(pifouisis, maxlag);
ylim(rrange)
title('PIF OU');
subplot(1, 3, 3);
isiserialcorr(lifadaptisis, maxlag);
ylim(rrange)
title('LIF adapt');
%% spike counts:
w = 0.1;
cmax = 8;
pmax = 0.5;
subplot(1, 3, 1);
counthist(poissonspikes, w);
xlim([0 cmax])
set(gca, 'XTick', 0:2:cmax)
ylim([0 pmax])
title('Poisson');
subplot(1, 3, 2);
counthist(pifouspikes, w);
xlim([0 cmax])
set(gca, 'XTick', 0:2:cmax)
ylim([0 pmax])
title('PIF OU');
subplot(1, 3, 3);
counthist(lifadaptspikes, w);
xlim([0 cmax])
set(gca, 'XTick', 0:2:cmax)
ylim([0 pmax])
title('LIF adapt');
savefigpdf(gcf, 'counthist.pdf', 20, 7);

View File

@ -1,27 +0,0 @@
rate = 100.0;
trials = 50;
tmax = 100.0;
% generate spikes:
spikes = poissonspikes( trials, rate, tmax );
% interspike intervals:
isivec = isis( spikes );
% histogram
f = figure( 1 );
isihist( isivec );
hold on
% theoretical density:
xmax = 5.0/rate;
x = 0:0.0001:xmax;
y = rate*exp(-rate*x);
plot( 1000.0*x, y, 'r', 'LineWidth', 3 );
% plot details:
title( sprintf( 'Poisson spike trains, rate=%g Hz, nisi=%d', rate, length( isivec ) ) )
xlim( [ 0.0 1000.0*xmax ] )
ylim( [ 0.0 1.1*rate ] )
legend( 'data', 'poisson' )
hold off
% serial correlations:
f = figure( 2 );
isiserialcorr( isivec, 10 );

View File

@ -1,46 +0,0 @@
rates = 1:1:100;
avisi = [];
sdisi = [];
cvisi = [];
for rate = rates
spikes = poissonspikes( 10, rate, 100.0 );
isivec = isis( spikes );
av = mean( isivec );
sd = std( isivec );
cv = sd/av;
avisi = [ avisi av ];
sdisi = [ sdisi sd ];
cvisi = [ cvisi cv ];
end
f = figure;
subplot( 1, 3, 1 );
scatter( rates, 1000.0*avisi, 'b', 'filled' );
hold on;
plot( rates, 1000.0./rates, 'r' );
hold off;
xlabel( 'Rate \lambda [Hz]' );
ylim( [ 0 1000 ] );
title( 'Mean ISI [ms]' );
legend( 'simulation', 'theory 1/\lambda' );
subplot( 1, 3, 2 );
scatter( rates, 1000.0*sdisi, 'b', 'filled' );
hold on;
plot( rates, 1000.0./rates, 'r' );
hold off;
xlabel( 'Rate \lambda [Hz]' );
ylim( [ 0 1000 ] )
title( 'Standard deviation ISI [ms]' );
legend( 'simulation', 'theory 1/\lambda' );
subplot( 1, 3, 3 );
scatter( rates, cvisi, 'b', 'filled' );
hold on;
plot( rates, ones( size( rates ) ), 'r' );
hold off;
xlabel( 'Rate \lambda [Hz]' );
ylim( [ 0 2 ] )
title( 'CV' );
legend( 'simulation', 'theory' );

View File

@ -1,14 +0,0 @@
function p = psth(spikes, dt, tmax)
% plots a PSTH of the spikes with binwidth dt
t = 0.0:dt:tmax+dt;
p = zeros(1, length(t));
for k=1:length(spikes)
times = spikes{k};
[h, b] = hist(times, t);
p = p + h;
end
p = p/length(spikes)/dt;
t(end) = [];
p(end) = [];
plot(t, p);
end

View File

@ -1,12 +0,0 @@
function r = spikerate(spikes, duration)
% returns the average spike rate of the spikes
% for the first duration seconds
% spikes: a cell array of vectors of spike times
rates = zeros(length(spikes),1);
for k = 1:length(spikes)
times = spikes{k};
rates(k) = sum(times<duration)/duration;
end
r = mean(rates);
end

View File

@ -20,7 +20,6 @@
\section{TODO} \section{TODO}
\begin{itemize} \begin{itemize}
\item Explain difference stationary versus non-stationary point process
\item Show different types of ISI histograms (regular, noisy, poisson, bursty, locking) \item Show different types of ISI histograms (regular, noisy, poisson, bursty, locking)
\item Multitrial firing rates \item Multitrial firing rates
\item Better explain difference between ISI method and PSTHes. The \item Better explain difference between ISI method and PSTHes. The

Binary file not shown.

Binary file not shown.