fixed initial condition of IF models
This commit is contained in:
parent
768d5bb7e6
commit
24bcd70864
@ -1,5 +1,5 @@
|
|||||||
\setlength{\fboxsep}{2ex}
|
\setlength{\fboxsep}{2ex}
|
||||||
\fbox{\parbox{1\linewidth}{ \small
|
\fbox{\parbox{1\linewidth}{\small
|
||||||
|
|
||||||
{\bf Evaluation criteria:}
|
{\bf Evaluation criteria:}
|
||||||
|
|
||||||
@ -48,7 +48,9 @@
|
|||||||
and discussing your results, and (iii) explain how you solved
|
and discussing your results, and (iii) explain how you solved
|
||||||
the problem algorithmically (don't show your entire code). All
|
the problem algorithmically (don't show your entire code). All
|
||||||
data-related figures you show in the presentation should be
|
data-related figures you show in the presentation should be
|
||||||
produced by your program. It is always a good idea to illustrate
|
produced by your program --- no editing or labeling by
|
||||||
the problem with basic plots of the raw-data. Make sure the axis
|
PowerPoint or other software. It is always a good idea to
|
||||||
labels are large enough!
|
illustrate the problem with basic plots of the raw-data. Make
|
||||||
}}
|
sure the axis labels are large enough!
|
||||||
|
|
||||||
|
}}
|
||||||
|
@ -20,7 +20,7 @@ function spikes = lifboltzmannspikes(trials, input, tmax, gain)
|
|||||||
for k=1:trials
|
for k=1:trials
|
||||||
times = [];
|
times = [];
|
||||||
j = 1;
|
j = 1;
|
||||||
v = vreset;
|
v = vreset + (vthresh - vreset) * rand();
|
||||||
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
||||||
for i=1:n
|
for i=1:n
|
||||||
v = v + (- v + noise(i) + inb)*dt/tau;
|
v = v + (- v + noise(i) + inb)*dt/tau;
|
||||||
|
@ -76,7 +76,8 @@ plot(false2s, true1s);
|
|||||||
T = 0.1;
|
T = 0.1;
|
||||||
gains = 0.01:0.01:1.0;
|
gains = 0.01:0.01:1.0;
|
||||||
cmax = 100;
|
cmax = 100;
|
||||||
ds = zeros(length(gains), 1);
|
dstt = zeros(length(gains), 1);
|
||||||
|
dsff = zeros(length(gains), 1);
|
||||||
for k = 1:length(gains)
|
for k = 1:length(gains)
|
||||||
gain = gains(k);
|
gain = gains(k);
|
||||||
spikes1 = lifboltzmannspikes(trials, I1, tmax, gain);
|
spikes1 = lifboltzmannspikes(trials, I1, tmax, gain);
|
||||||
@ -84,9 +85,11 @@ for k = 1:length(gains)
|
|||||||
[c1, b1] = counthist(spikes1, 0.0, tmax, T, cmax);
|
[c1, b1] = counthist(spikes1, 0.0, tmax, T, cmax);
|
||||||
[c2, b2] = counthist(spikes2, 0.0, tmax, T, cmax);
|
[c2, b2] = counthist(spikes2, 0.0, tmax, T, cmax);
|
||||||
[d, thresholds, true1s, false1s, true2s, false2s, pratio] = discriminability(spikes1, spikes2, tmax, T, cmax);
|
[d, thresholds, true1s, false1s, true2s, false2s, pratio] = discriminability(spikes1, spikes2, tmax, T, cmax);
|
||||||
ds(k) = d;
|
dstt(k) = d;
|
||||||
|
dsff(k) = min(false1s + false2s);
|
||||||
end
|
end
|
||||||
figure()
|
figure()
|
||||||
plot(gains, ds)
|
plot(gains, dstt);
|
||||||
|
hold on;
|
||||||
|
plot(gains, dsff);
|
||||||
|
hold off;
|
||||||
|
@ -20,7 +20,7 @@ function spikes = lifboltzmannspikes(trials, input, tmax, gain)
|
|||||||
for k=1:trials
|
for k=1:trials
|
||||||
times = [];
|
times = [];
|
||||||
j = 1;
|
j = 1;
|
||||||
v = vreset;
|
v = vreset + (vthresh - vreset) * rand();
|
||||||
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
||||||
for i=1:n
|
for i=1:n
|
||||||
v = v + (- v + noise(i) + inb)*dt/tau;
|
v = v + (- v + noise(i) + inb)*dt/tau;
|
||||||
|
@ -19,7 +19,7 @@ function spikes = lifspikes(trials, input, tmax)
|
|||||||
for k=1:trials
|
for k=1:trials
|
||||||
times = [];
|
times = [];
|
||||||
j = 1;
|
j = 1;
|
||||||
v = vreset + (vthresh-vreset)*rand(1);
|
v = vreset + (vthresh-vreset)*rand();
|
||||||
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
||||||
for i=1:length(noise)
|
for i=1:length(noise)
|
||||||
v = v + (- v + noise(i) + input)*dt/tau;
|
v = v + (- v + noise(i) + input)*dt/tau;
|
||||||
|
@ -19,7 +19,7 @@ function spikes = lifspikes(trials, input, tmax)
|
|||||||
for k=1:trials
|
for k=1:trials
|
||||||
times = [];
|
times = [];
|
||||||
j = 1;
|
j = 1;
|
||||||
v = vreset + (vthresh-vreset)*rand(1);
|
v = vreset + (vthresh-vreset)*rand();
|
||||||
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
||||||
for i=1:length(noise)
|
for i=1:length(noise)
|
||||||
v = v + (- v + noise(i) + input)*dt/tau;
|
v = v + (- v + noise(i) + input)*dt/tau;
|
||||||
|
@ -32,7 +32,7 @@ function spikes = lifadaptspikes( trials, input, tmaxdt, D, tauadapt, adaptincr
|
|||||||
for k=1:trials
|
for k=1:trials
|
||||||
times = [];
|
times = [];
|
||||||
j = 1;
|
j = 1;
|
||||||
v = vreset;
|
v = vreset + (vthresh-vreset)*rand();
|
||||||
a = 0.0;
|
a = 0.0;
|
||||||
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
||||||
for i=1:length( noise )
|
for i=1:length( noise )
|
||||||
|
@ -28,7 +28,7 @@ function spikes = lifouspikes( trials, input, tmaxdt, D, outau )
|
|||||||
times = [];
|
times = [];
|
||||||
j = 1;
|
j = 1;
|
||||||
n = 0.0;
|
n = 0.0;
|
||||||
v = vreset;
|
v = vreset + (vthresh-vreset)*rand();
|
||||||
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
||||||
for i=1:length( noise )
|
for i=1:length( noise )
|
||||||
n = n + ( - n + noise(i))*dt/outau;
|
n = n + ( - n + noise(i))*dt/outau;
|
||||||
|
@ -28,7 +28,7 @@ function spikes = pifouspikes( trials, input, tmaxdt, D, outau )
|
|||||||
times = [];
|
times = [];
|
||||||
j = 1;
|
j = 1;
|
||||||
n = 0.0;
|
n = 0.0;
|
||||||
v = vreset;
|
v = vreset + (vthresh-vreset)*rand();
|
||||||
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
|
||||||
for i=1:length( noise )
|
for i=1:length( noise )
|
||||||
n = n + ( - n + noise(i))*dt/outau;
|
n = n + ( - n + noise(i))*dt/outau;
|
||||||
|
@ -18,7 +18,7 @@ function spikes = lifspikes(trials, input, tmax, D)
|
|||||||
for k=1:trials
|
for k=1:trials
|
||||||
times = [];
|
times = [];
|
||||||
j = 1;
|
j = 1;
|
||||||
v = vreset;
|
v = vreset + (vthresh-vreset)*rand();
|
||||||
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
||||||
for i=1:n
|
for i=1:n
|
||||||
v = v + (- v + noise(i) + input)*dt/tau;
|
v = v + (- v + noise(i) + input)*dt/tau;
|
||||||
|
@ -18,7 +18,7 @@ function spikes = lifspikes(trials, input, tmax, D)
|
|||||||
for k=1:trials
|
for k=1:trials
|
||||||
times = [];
|
times = [];
|
||||||
j = 1;
|
j = 1;
|
||||||
v = vreset;
|
v = vreset + (vthresh-vreset)*rand();
|
||||||
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
||||||
for i=1:n
|
for i=1:n
|
||||||
v = v + (- v + noise(i) + input)*dt/tau;
|
v = v + (- v + noise(i) + input)*dt/tau;
|
||||||
|
Reference in New Issue
Block a user