plotting basically done

This commit is contained in:
Fabian Sinz 2014-10-14 16:57:48 +02:00
parent c4bc75b8f5
commit 1e7f07a2d2
13 changed files with 222 additions and 16 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

BIN
statistics/figs/boxplot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

View File

@ -42,7 +42,7 @@
Bernstein Center T\"ubingen} Bernstein Center T\"ubingen}
\institute[Scientific Computing]{} \institute[Scientific Computing]{}
\date{11/27/2013} \date{10/20/2014}
%\logo{\pgfuseimage{logo}} %\logo{\pgfuseimage{logo}}
\subject{Lectures} \subject{Lectures}
@ -359,9 +359,7 @@ correlation coefficient does not have that property.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{description of data and plotting} \section{description of data and plotting}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{what makes a good plot}
\subsection{nominal scale}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{} \frametitle{}
@ -470,6 +468,8 @@ correlation coefficient does not have that property.
\end{itemize} \end{itemize}
\mycite{Allen et al. 2012, Neuron} \mycite{Allen et al. 2012, Neuron}
\end{frame} \end{frame}
\subsection{bad examples}
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{suboptimal example} \frametitle{suboptimal example}
@ -481,17 +481,50 @@ correlation coefficient does not have that property.
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{different axes} \frametitle{suboptimal example}
\begin{center}
\includegraphics[width=.5\linewidth]{figs/badbarright.png}
\end{center}
\source{http://en.wikipedia.org/wiki/Misleading\_graph}
\end{frame} \end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{suboptimal example}
\begin{center}
\includegraphics[width=.4\linewidth]{figs/yaxisscalingleft.png}
\hspace{.5cm}
\includegraphics[width=.4\linewidth]{figs/yaxisscalingright.png}
\end{center}
\source{http://en.wikipedia.org/wiki/Misleading\_graph}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{suboptimal example}
\begin{center}
\includegraphics[width=.4\linewidth]{figs/badscatterleft.png}
\hspace{.5cm}
\includegraphics[width=.4\linewidth]{figs/badscatterright.png}
\end{center}
\source{http://en.wikipedia.org/wiki/Misleading\_graph}
\end{frame}
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame} \begin{frame}
\frametitle{Bad bar plot} \frametitle{suboptimal example}
\begin{center} \begin{center}
\includegraphics[width=.8\linewidth]{figs/badbarplot} \includegraphics[width=.8\linewidth]{figs/badbarplot}
\end{center} \end{center}
\source{www.enfovis.com} \source{www.enfovis.com}
\end{frame} \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{nominal scale}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{plotting nominal data} \frametitle{plotting nominal data}
@ -536,7 +569,7 @@ set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
\end{frame} \end{frame}
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{Darstellung nominaler Daten} \frametitle{plotting nominal data}
\framesubtitle{exercise} \framesubtitle{exercise}
\begin{task}{pie chart} \begin{task}{pie chart}
Plot the same data ($n_{py}=50$, $n_{in}=90$) as a pie chart in Matlab. Plot the same data ($n_{py}=50$, $n_{in}=90$) as a pie chart in Matlab.
@ -544,7 +577,7 @@ set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
\end{frame} \end{frame}
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{Darstellung nominaler Daten} \frametitle{plotting nominal data}
\framesubtitle{pie chart for relative frequency} \framesubtitle{pie chart for relative frequency}
\scriptsize \scriptsize
\begin{lstlisting} \begin{lstlisting}
@ -614,18 +647,152 @@ ylabel('Count')
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{plotting interval/ratio/absolute data} \frametitle{plotting interval/ratio/absolute data}
\framesubtitle{other ways} \framesubtitle{bar plot}
There are other ways to plot a sample $x_1, ..., x_n$ of There are several ways to plot a sample $x_1, ..., x_n$ of interval/ratio/absolute
interval/ratio/absolute scale data. E.g. scale with a bar plot
\begin{center}
\includegraphics[width=.6\linewidth]{figs/barplots.png}
\end{center}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile,fragile]
\frametitle{plotting interval/ratio/absolute data}
\framesubtitle{bar plot}
\scriptsize
\begin{lstlisting}
% bar plot
x = rand(10,1);
gray = [.5,.5,.5];
bar(1, mean(x), 'EdgeColor','w','FaceColor', gray);
hold on
bar(2, mean(x), 'EdgeColor','w','FaceColor', gray);
plot(0*x + 2, x, 'ok');
bar(3, mean(x), 'EdgeColor','w','FaceColor', gray);
errorbar(3, mean(x), std(x), 'ok');
bar(4, mean(x), 'EdgeColor','w','FaceColor', gray);
errorbar(4, mean(x), std(x)/sqrt(length(x)), 'ok');
set(gca, 'xtick',[])
ylabel('uniformly distributed random data in [0,1]')
box('off')
title('different forms of bar plots')
hold off
\end{lstlisting}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile,fragile]
\frametitle{plotting interval/ratio/absolute data}
\framesubtitle{bar plot and measure of central tendency and spread}
\begin{itemize} \begin{itemize}
\item box plot \item A bar plot collapses real data onto a single number and some
\item bar plot measure of spread. This number is usually a {\em measure of central
\item smoothed histogram tendency}, i.e. a typical/central value for the probability
\item ... distribution of the data.\pause
\item What measures of central tendency can you think of?\pause
\begin{itemize}
\item mean
\item median
\item geometric mean (the nth root of the product of the data values)
\item weighted mean
\item midrange (mean of the maximum and minimum values of a data set)
\end{itemize}\pause
\item Additionally, the bar plot is equipped with a measure of {\em
spread} or {\em dispersion}. What measure of spread can you think of?\pause
\begin{itemize}
\item standard deviation
\item range (maximum minus minimum of a dataset)
\item inter-quartile range
\end{itemize}
\end{itemize} \end{itemize}
We will look at them while plotting mixed data in the following.
\end{frame} \end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile,fragile]
\frametitle{plotting interval/ratio/absolute data}
\framesubtitle{measure of central tendency and spread}
\Large
\begin{center}
\bf The part of statistics that summarizes data in a small number
of values is called {\em descriptive statistics}.
\end{center}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{plotting interval/ratio/absolute data}
\framesubtitle{boxplot}
\begin{minipage}{1.0\linewidth}
\begin{minipage}{0.5\linewidth}
\begin{center}
\includegraphics[width=\linewidth]{figs/boxplot.png}
\end{center}
\end{minipage}
\begin{minipage}{0.5\linewidth}
Who knows what the elements mean?\pause
\begin{itemize}
\item the box depicts the inter-quartile range
\item the line denotes the median
\item the whiskers denote the extreme value of the data not
considered outliers
\item outliers are plotted separately
\end{itemize}
\begin{task}{Outliers}
\begin{itemize}
\item Find out how an outlier is defined in a matlab boxplot.
\item Can you remove an outlier from the dataset?
\end{itemize}
\end{task}
\end{minipage}
\end{minipage}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{plotting interval/ratio/absolute data}
\framesubtitle{violinplot}
\begin{center}
\includegraphics[width=.8\linewidth]{figs/violinplots.png}
\end{center}
\begin{itemize}
\item Violinplots depict the distribution of the data by a
smoothed histogram.
\item Additional information (data points, median,
inter-quartile range) are plotted inside.
\end{itemize}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{plotting combinations of scales}
What could we use for a combination of categorial/nominal and
interval/ratio/absolute?
\pause
\begin{center}
\includegraphics[width=.5\linewidth]{figs/factorplot.png}
\end{center}
Each category is a single bar.
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{plotting combinations of scales}
What could we use for a combination of interval/ratio/absolute and
interval/ratio/absolute, e.g. $(x_1, y_1), ..., (x_n,y_n)$? \pause
\begin{center}
\includegraphics[width=.8\linewidth]{figs/paireddata.png}
\end{center}
Scatter plot or paired bar chart. Scatter plot can also be used for
ordinal vs. ordinal data (why not the bar chart?).
\end{frame}
\end{document} \end{document}

View File

@ -14,3 +14,42 @@ ylabel('Count')
set(gcf, 'PaperUnits', 'centimeters'); set(gcf, 'PaperUnits', 'centimeters');
set(gcf, 'PaperSize', [11.7 9.0]); set(gcf, 'PaperSize', [11.7 9.0]);
set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]); set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
% bar plot
figure
x = rand(10,1);
gray = [.5,.5,.5];
bar(1, mean(x), 'EdgeColor','w','FaceColor', gray);
hold on
bar(2, mean(x), 'EdgeColor','w','FaceColor', gray);
plot(0*x + 2, x, 'ok');
bar(3, mean(x), 'EdgeColor','w','FaceColor', gray);
errorbar(3, mean(x), std(x), 'ok');
bar(4, mean(x), 'EdgeColor','w','FaceColor', gray);
errorbar(4, mean(x), std(x)/sqrt(length(x)), 'ok');
set(gca, 'xtick',[])
ylabel('uniformly distributed random data in [0,1]')
box('off')
title('different forms of bar plots')
set(gcf, 'PaperUnits', 'centimeters');
set(gcf, 'PaperSize', [11.7 9.0]);
set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
hold off
% box plot
figure
x = rand(10,1);
x(10) = 3;
boxplot(x)
set(gca, 'xtick',[])
ylabel('data')
box('off')
title('box plot')
set(gcf, 'PaperUnits', 'centimeters');
set(gcf, 'PaperSize', [11.7 9.0]);
set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
hold off