plotting basically done

This commit is contained in:
Fabian Sinz 2014-10-14 16:57:48 +02:00
parent c4bc75b8f5
commit 1e7f07a2d2
13 changed files with 222 additions and 16 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

BIN
statistics/figs/boxplot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

View File

@ -42,7 +42,7 @@
Bernstein Center T\"ubingen} Bernstein Center T\"ubingen}
\institute[Scientific Computing]{} \institute[Scientific Computing]{}
\date{11/27/2013} \date{10/20/2014}
%\logo{\pgfuseimage{logo}} %\logo{\pgfuseimage{logo}}
\subject{Lectures} \subject{Lectures}
@ -359,9 +359,7 @@ correlation coefficient does not have that property.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{description of data and plotting} \section{description of data and plotting}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{what makes a good plot}
\subsection{nominal scale}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{} \frametitle{}
@ -470,6 +468,8 @@ correlation coefficient does not have that property.
\end{itemize} \end{itemize}
\mycite{Allen et al. 2012, Neuron} \mycite{Allen et al. 2012, Neuron}
\end{frame} \end{frame}
\subsection{bad examples}
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{suboptimal example} \frametitle{suboptimal example}
@ -481,17 +481,50 @@ correlation coefficient does not have that property.
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{different axes} \frametitle{suboptimal example}
\begin{center}
\includegraphics[width=.5\linewidth]{figs/badbarright.png}
\end{center}
\source{http://en.wikipedia.org/wiki/Misleading\_graph}
\end{frame} \end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{suboptimal example}
\begin{center}
\includegraphics[width=.4\linewidth]{figs/yaxisscalingleft.png}
\hspace{.5cm}
\includegraphics[width=.4\linewidth]{figs/yaxisscalingright.png}
\end{center}
\source{http://en.wikipedia.org/wiki/Misleading\_graph}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{suboptimal example}
\begin{center}
\includegraphics[width=.4\linewidth]{figs/badscatterleft.png}
\hspace{.5cm}
\includegraphics[width=.4\linewidth]{figs/badscatterright.png}
\end{center}
\source{http://en.wikipedia.org/wiki/Misleading\_graph}
\end{frame}
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame} \begin{frame}
\frametitle{Bad bar plot} \frametitle{suboptimal example}
\begin{center} \begin{center}
\includegraphics[width=.8\linewidth]{figs/badbarplot} \includegraphics[width=.8\linewidth]{figs/badbarplot}
\end{center} \end{center}
\source{www.enfovis.com} \source{www.enfovis.com}
\end{frame} \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{nominal scale}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{plotting nominal data} \frametitle{plotting nominal data}
@ -536,7 +569,7 @@ set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
\end{frame} \end{frame}
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{Darstellung nominaler Daten} \frametitle{plotting nominal data}
\framesubtitle{exercise} \framesubtitle{exercise}
\begin{task}{pie chart} \begin{task}{pie chart}
Plot the same data ($n_{py}=50$, $n_{in}=90$) as a pie chart in Matlab. Plot the same data ($n_{py}=50$, $n_{in}=90$) as a pie chart in Matlab.
@ -544,7 +577,7 @@ set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
\end{frame} \end{frame}
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{Darstellung nominaler Daten} \frametitle{plotting nominal data}
\framesubtitle{pie chart for relative frequency} \framesubtitle{pie chart for relative frequency}
\scriptsize \scriptsize
\begin{lstlisting} \begin{lstlisting}
@ -614,18 +647,152 @@ ylabel('Count')
%------------------------------------------------------------- %-------------------------------------------------------------
\begin{frame}[fragile] \begin{frame}[fragile]
\frametitle{plotting interval/ratio/absolute data} \frametitle{plotting interval/ratio/absolute data}
\framesubtitle{other ways} \framesubtitle{bar plot}
There are other ways to plot a sample $x_1, ..., x_n$ of There are several ways to plot a sample $x_1, ..., x_n$ of interval/ratio/absolute
interval/ratio/absolute scale data. E.g. scale with a bar plot
\begin{center}
\includegraphics[width=.6\linewidth]{figs/barplots.png}
\end{center}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile,fragile]
\frametitle{plotting interval/ratio/absolute data}
\framesubtitle{bar plot}
\scriptsize
\begin{lstlisting}
% bar plot
x = rand(10,1);
gray = [.5,.5,.5];
bar(1, mean(x), 'EdgeColor','w','FaceColor', gray);
hold on
bar(2, mean(x), 'EdgeColor','w','FaceColor', gray);
plot(0*x + 2, x, 'ok');
bar(3, mean(x), 'EdgeColor','w','FaceColor', gray);
errorbar(3, mean(x), std(x), 'ok');
bar(4, mean(x), 'EdgeColor','w','FaceColor', gray);
errorbar(4, mean(x), std(x)/sqrt(length(x)), 'ok');
set(gca, 'xtick',[])
ylabel('uniformly distributed random data in [0,1]')
box('off')
title('different forms of bar plots')
hold off
\end{lstlisting}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile,fragile]
\frametitle{plotting interval/ratio/absolute data}
\framesubtitle{bar plot and measure of central tendency and spread}
\begin{itemize}
\item A bar plot collapses real data onto a single number and some
measure of spread. This number is usually a {\em measure of central
tendency}, i.e. a typical/central value for the probability
distribution of the data.\pause
\item What measures of central tendency can you think of?\pause
\begin{itemize}
\item mean
\item median
\item geometric mean (the nth root of the product of the data values)
\item weighted mean
\item midrange (mean of the maximum and minimum values of a data set)
\end{itemize}\pause
\item Additionally, the bar plot is equipped with a measure of {\em
spread} or {\em dispersion}. What measure of spread can you think of?\pause
\begin{itemize}
\item standard deviation
\item range (maximum minus minimum of a dataset)
\item inter-quartile range
\end{itemize}
\end{itemize}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile,fragile]
\frametitle{plotting interval/ratio/absolute data}
\framesubtitle{measure of central tendency and spread}
\Large
\begin{center}
\bf The part of statistics that summarizes data in a small number
of values is called {\em descriptive statistics}.
\end{center}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{plotting interval/ratio/absolute data}
\framesubtitle{boxplot}
\begin{minipage}{1.0\linewidth}
\begin{minipage}{0.5\linewidth}
\begin{center}
\includegraphics[width=\linewidth]{figs/boxplot.png}
\end{center}
\end{minipage}
\begin{minipage}{0.5\linewidth}
Who knows what the elements mean?\pause
\begin{itemize} \begin{itemize}
\item box plot \item the box depicts the inter-quartile range
\item bar plot \item the line denotes the median
\item smoothed histogram \item the whiskers denote the extreme value of the data not
\item ... considered outliers
\item outliers are plotted separately
\end{itemize} \end{itemize}
We will look at them while plotting mixed data in the following. \begin{task}{Outliers}
\begin{itemize}
\item Find out how an outlier is defined in a matlab boxplot.
\item Can you remove an outlier from the dataset?
\end{itemize}
\end{task}
\end{minipage}
\end{minipage}
\end{frame} \end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{plotting interval/ratio/absolute data}
\framesubtitle{violinplot}
\begin{center}
\includegraphics[width=.8\linewidth]{figs/violinplots.png}
\end{center}
\begin{itemize}
\item Violinplots depict the distribution of the data by a
smoothed histogram.
\item Additional information (data points, median,
inter-quartile range) are plotted inside.
\end{itemize}
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{plotting combinations of scales}
What could we use for a combination of categorial/nominal and
interval/ratio/absolute?
\pause
\begin{center}
\includegraphics[width=.5\linewidth]{figs/factorplot.png}
\end{center}
Each category is a single bar.
\end{frame}
%-------------------------------------------------------------
\begin{frame}[fragile]
\frametitle{plotting combinations of scales}
What could we use for a combination of interval/ratio/absolute and
interval/ratio/absolute, e.g. $(x_1, y_1), ..., (x_n,y_n)$? \pause
\begin{center}
\includegraphics[width=.8\linewidth]{figs/paireddata.png}
\end{center}
Scatter plot or paired bar chart. Scatter plot can also be used for
ordinal vs. ordinal data (why not the bar chart?).
\end{frame}
\end{document} \end{document}

View File

@ -14,3 +14,42 @@ ylabel('Count')
set(gcf, 'PaperUnits', 'centimeters'); set(gcf, 'PaperUnits', 'centimeters');
set(gcf, 'PaperSize', [11.7 9.0]); set(gcf, 'PaperSize', [11.7 9.0]);
set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]); set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
% bar plot
figure
x = rand(10,1);
gray = [.5,.5,.5];
bar(1, mean(x), 'EdgeColor','w','FaceColor', gray);
hold on
bar(2, mean(x), 'EdgeColor','w','FaceColor', gray);
plot(0*x + 2, x, 'ok');
bar(3, mean(x), 'EdgeColor','w','FaceColor', gray);
errorbar(3, mean(x), std(x), 'ok');
bar(4, mean(x), 'EdgeColor','w','FaceColor', gray);
errorbar(4, mean(x), std(x)/sqrt(length(x)), 'ok');
set(gca, 'xtick',[])
ylabel('uniformly distributed random data in [0,1]')
box('off')
title('different forms of bar plots')
set(gcf, 'PaperUnits', 'centimeters');
set(gcf, 'PaperSize', [11.7 9.0]);
set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
hold off
% box plot
figure
x = rand(10,1);
x(10) = 3;
boxplot(x)
set(gca, 'xtick',[])
ylabel('data')
box('off')
title('box plot')
set(gcf, 'PaperUnits', 'centimeters');
set(gcf, 'PaperSize', [11.7 9.0]);
set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
hold off