Few updates on todays lecture
This commit is contained in:
parent
b5084b78f4
commit
1e3b02b9a1
@ -1,6 +1,6 @@
|
||||
x = randn( 100, 1 );
|
||||
bins1 = -4:2:4;
|
||||
bins2 = -4:0.5:4;
|
||||
x = randn( 100, 1 ); % generate some data
|
||||
bins1 = -4:2:4; % large bins
|
||||
bins2 = -4:0.5:4; % small bins
|
||||
subplot( 1, 2, 1 );
|
||||
hold on;
|
||||
hist( x, bins1 );
|
||||
@ -10,6 +10,7 @@ ylabel('Frequeny')
|
||||
hold off;
|
||||
subplot( 1, 2, 2 );
|
||||
hold on;
|
||||
% normalize to the rigtht bin size:
|
||||
hist( x, bins1, 1.0/(bins1(2)-bins1(1)) );
|
||||
hist( x, bins2, 1.0/(bins2(2)-bins2(1)) );
|
||||
xlabel('x')
|
||||
|
@ -1,22 +1,30 @@
|
||||
% plot Gaussian pdf:
|
||||
dx=0.1
|
||||
dx=0.1;
|
||||
x = [-4.0:dx:4.0];
|
||||
p = exp(-0.5*x.^2)/sqrt(2.0*pi);
|
||||
hold on
|
||||
plot(x,p, 'linewidth', 10 )
|
||||
plot(x, p, 'linewidth', 10)
|
||||
% show area of integral:
|
||||
area(x((x>=x1)&(x<=x2)), p((x>=x1)&(x<=x2)), 'FaceColor', 'r' )
|
||||
hold off
|
||||
|
||||
% compute integral between x1 and x2:
|
||||
x1=1.0
|
||||
x2=2.0
|
||||
P = sum(p((x>=x1)&(x<x2)))*dx
|
||||
x1=1.0;
|
||||
x2=2.0;
|
||||
P = sum(p((x>=x1)&(x<x2)))*dx;
|
||||
disp( [ 'The integral between ', num2str(x1, 1), ' and ', num2str(x2, 1), ' is ', num2str(P, 3) ] );
|
||||
|
||||
% draw random numbers:
|
||||
r = randn( 10000, 1 );
|
||||
hist(r,x,1.0/dx)
|
||||
%r = randn( 10000, 1 );
|
||||
%hist(r,x,1.0/dx)
|
||||
|
||||
% check P:
|
||||
Pr = sum((r>=x1)&(r<x2))/length(r)
|
||||
Pr = sum((r>=x1)&(r<x2))/length(r);
|
||||
disp( [ 'The probability of getting a number between ', num2str(x1, 1), ' and ', num2str(x2, 1), ' is ', num2str(Pr, 3) ] );
|
||||
|
||||
hold off
|
||||
% infinite integral:
|
||||
P = sum(p)*dx;
|
||||
disp( [ 'The integral between -infinity and +infinity is ', num2str(P, 3) ] );
|
||||
disp( [ 'I.e. the probability to get any number is ', num2str(P, 3) ] );
|
||||
|
||||
|
||||
|
@ -1,13 +1,13 @@
|
||||
function m = mymedian( x )
|
||||
% returns the median of the vector x
|
||||
xs = sort( x );
|
||||
if ( length( xs ) == 0 )
|
||||
if ( length( xs ) == 0 ) % empty input vector
|
||||
m = NaN;
|
||||
elseif ( rem( length( xs ), 2 ) == 0 )
|
||||
elseif ( rem( length( xs ), 2 ) == 0 ) % even number of data values
|
||||
index = length( xs )/2;
|
||||
m = (xs( index ) + xs( index+1 ))/2;
|
||||
else
|
||||
index = (length( xs ) + 1)/2;
|
||||
m = (xs( index ) + xs( index+1 ))/2; % average the two central elements
|
||||
else % odd number of data values
|
||||
index = (length( xs ) + 1)/2; % take the middle element
|
||||
m = xs( index );
|
||||
end
|
||||
end
|
||||
|
@ -1,13 +1,14 @@
|
||||
function q = quartiles( x )
|
||||
% returns a vector with the first, second, and third quartile of the vector x
|
||||
% returns a vector with the first, second, and third quartile
|
||||
% of the vector x
|
||||
xs = sort( x );
|
||||
if ( length( xs ) == 0 )
|
||||
if ( length( xs ) == 0 ) % no data
|
||||
q = [];
|
||||
elseif ( rem( length( xs ), 2 ) == 0 )
|
||||
elseif ( rem( length( xs ), 2 ) == 0 ) % even number of data
|
||||
index = length( xs )/2;
|
||||
m = (xs( index ) + xs( index+1 ))/2;
|
||||
q = [ round( xs(length(xs)/4) ), m, xs(round(3*length(xs)/4)) ];
|
||||
else
|
||||
else % odd number of data
|
||||
index = (length( xs ) + 1)/2;
|
||||
m = xs( index );
|
||||
q = [ round( xs(length(xs)/4) ), m, xs(round(3*length(xs)/4)) ];
|
||||
|
@ -1,11 +1,16 @@
|
||||
TEXFILES=$(wildcard *.tex)
|
||||
PDFFILES=$(TEXFILES:.tex=.pdf)
|
||||
PYFILES=$(wildcard *.py)
|
||||
PYPDFFILES=$(PYFILES:.py=.pdf)
|
||||
|
||||
pdf : $(PDFFILES)
|
||||
pdf : $(PDFFILES) $(PYPDFFILES)
|
||||
|
||||
$(PDFFILES) : %.pdf : %.tex
|
||||
pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $< || true
|
||||
|
||||
$(PYPDFFILES) : %.pdf : %.py
|
||||
python $<
|
||||
|
||||
clean :
|
||||
rm -f *~ $(TEXFILES:.tex=.aux) $(TEXFILES:.tex=.log) $(TEXFILES:.tex=.out) $(TEXFILES:.tex=.nav) $(TEXFILES:.tex=.snm) $(TEXFILES:.tex=.toc) $(TEXFILES:.tex=.vrb)
|
||||
|
||||
|
@ -154,7 +154,7 @@
|
||||
below. In particular the script should test data vectors of
|
||||
different length.} {Schreibe ein Skript, das testet ob die
|
||||
\code{mymedian} Funktion wirklich die Zahl zur\"uckgibt, \"uber
|
||||
der genausoviele Datenwerte liegen wie darunter. Das Skript sollte
|
||||
der genauso viele Datenwerte liegen wie darunter. Das Skript sollte
|
||||
insbesondere verschieden lange Datenvektoren testen.}
|
||||
\end{exercise}
|
||||
|
||||
@ -246,7 +246,7 @@ $A$ des Histogramms ist also
|
||||
\[ A = \sum_{i=1}^N ( n_i \cdot \Delta x ) = \Delta x \sum_{i=1}^N n_i \]
|
||||
und das normierte Histogramm hat die H\"ohe
|
||||
\[ p(x_i) = \frac{n_i}{\Delta x \sum_{i=1}^N n_i} \]
|
||||
Es muss also nicht nur durch die Summe, sondern auch durch die Breite der Klassen $\Delta x$
|
||||
Es muss also nicht nur durch die Summe, sondern auch durch die Breite $\Delta x$ der Klassen
|
||||
geteilt werden.
|
||||
|
||||
$p(x_i)$ kann keine Wahrscheinlichkeit sein, da $p(x_i)$ nun eine
|
||||
@ -258,14 +258,14 @@ spricht von einer Wahrscheinlichkeitsdichte.
|
||||
\caption{\label{pdfprobabilitiesfig} Wahrscheinlichkeiten bei
|
||||
einer Wahrscheinlichkeitsdichtefunktion.}
|
||||
\end{figure}
|
||||
|
||||
\begin{exercise}
|
||||
|
||||
\begin{exercise}[gaussianpdf.m]
|
||||
\tr{Plot the Gaussian probability density}{Plotte die Gauss'sche Wahrscheinlichkeitsdichte }
|
||||
\[ p_g(x) = 1/\sqrt{2\pi\sigma^2}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]
|
||||
\[ p_g(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]
|
||||
\tr{What does it mean?}{Was bedeutet die folgende Wahrscheinlichkeit?}
|
||||
\[ P(x_1 < x < x2) = \int_{x_1}^{x_2} p(x) \, dx \]
|
||||
\[ P(x_1 < x < x2) = \int\limits_{x_1}^{x_2} p(x) \, dx \]
|
||||
\tr{How large is}{Wie gro{\ss} ist}
|
||||
\[ \int_{-\infty}^{+\infty} p(x) \, dx \; ?\]
|
||||
\[ \int\limits_{-\infty}^{+\infty} p(x) \, dx \; ?\]
|
||||
\tr{Why?}{Warum?}
|
||||
\end{exercise}
|
||||
|
||||
@ -392,7 +392,6 @@ spricht von einer Wahrscheinlichkeitsdichte.
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Statistics}
|
||||
What is "a statistic"? % dt. Sch\"atzfunktion
|
||||
|
Reference in New Issue
Block a user