[likelihood] started to translate exercise
This commit is contained in:
parent
49f5687bfe
commit
18ca54e94d
192
likelihood/exercises/exercises01-de.tex
Normal file
192
likelihood/exercises/exercises01-de.tex
Normal file
@ -0,0 +1,192 @@
|
||||
\documentclass[12pt,a4paper,pdftex]{exam}
|
||||
|
||||
\usepackage[german]{babel}
|
||||
\usepackage{pslatex}
|
||||
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
|
||||
\usepackage{xcolor}
|
||||
\usepackage{graphicx}
|
||||
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
|
||||
|
||||
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
|
||||
\pagestyle{headandfoot}
|
||||
\ifprintanswers
|
||||
\newcommand{\stitle}{: L\"osungen}
|
||||
\else
|
||||
\newcommand{\stitle}{}
|
||||
\fi
|
||||
\header{{\bfseries\large \"Ubung 4\stitle}}{{\bfseries\large Statistik}}{{\bfseries\large 26. Oktober, 2015}}
|
||||
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
|
||||
jan.benda@uni-tuebingen.de}
|
||||
\runningfooter{}{\thepage}{}
|
||||
|
||||
\setlength{\baselineskip}{15pt}
|
||||
\setlength{\parindent}{0.0cm}
|
||||
\setlength{\parskip}{0.3cm}
|
||||
\renewcommand{\baselinestretch}{1.15}
|
||||
|
||||
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{listings}
|
||||
\lstset{
|
||||
language=Matlab,
|
||||
basicstyle=\ttfamily\footnotesize,
|
||||
numbers=left,
|
||||
numberstyle=\tiny,
|
||||
title=\lstname,
|
||||
showstringspaces=false,
|
||||
commentstyle=\itshape\color{darkgray},
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
columns=flexible,
|
||||
frame=single,
|
||||
xleftmargin=1em,
|
||||
xrightmargin=1em,
|
||||
aboveskip=10pt
|
||||
}
|
||||
|
||||
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{bm}
|
||||
\usepackage{dsfont}
|
||||
\newcommand{\naZ}{\mathds{N}}
|
||||
\newcommand{\gaZ}{\mathds{Z}}
|
||||
\newcommand{\raZ}{\mathds{Q}}
|
||||
\newcommand{\reZ}{\mathds{R}}
|
||||
\newcommand{\reZp}{\mathds{R^+}}
|
||||
\newcommand{\reZpN}{\mathds{R^+_0}}
|
||||
\newcommand{\koZ}{\mathds{C}}
|
||||
|
||||
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newcommand{\continue}{\ifprintanswers%
|
||||
\else
|
||||
\vfill\hspace*{\fill}$\rightarrow$\newpage%
|
||||
\fi}
|
||||
\newcommand{\continuepage}{\ifprintanswers%
|
||||
\newpage
|
||||
\else
|
||||
\vfill\hspace*{\fill}$\rightarrow$\newpage%
|
||||
\fi}
|
||||
\newcommand{\newsolutionpage}{\ifprintanswers%
|
||||
\newpage%
|
||||
\else
|
||||
\fi}
|
||||
|
||||
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newcommand{\qt}[1]{\textbf{#1}\\}
|
||||
\newcommand{\pref}[1]{(\ref{#1})}
|
||||
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
|
||||
\newcommand{\code}[1]{\texttt{#1}}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{document}
|
||||
|
||||
\input{instructions}
|
||||
|
||||
|
||||
\begin{questions}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\question \qt{Maximum Likelihood der Standardabweichung}
|
||||
Wir wollen uns die Likelihood und die Log-Likelihood am Beispiel der
|
||||
Absch\"atzung der Standardabweichung verdeutlichen.
|
||||
\begin{parts}
|
||||
\part Ziehe $n=50$ normalverteilte Zufallsvariablen mit Mittelwert $\mu=3$
|
||||
und einer Standardabweichung $\sigma=2$.
|
||||
|
||||
\part
|
||||
Plotte die Likelihood (aus dem Produkt der Wahrscheinlichkeiten) und
|
||||
die Log-Likelihood (aus der Summe der logarithmierten
|
||||
Wahrscheinlichkeiten) f\"ur die Standardabweichung als Parameter. Vergleiche die
|
||||
Position der Maxima mit der aus den Daten berechneten Standardabweichung.
|
||||
|
||||
\part
|
||||
Erh\"ohe $n$ auf 1000. Was passiert mit der Likelihood, was mit der Log-Likelihood? Warum?
|
||||
\end{parts}
|
||||
\begin{solution}
|
||||
\lstinputlisting{mlestd.m}
|
||||
\includegraphics[width=1\textwidth]{mlestd}
|
||||
\end{solution}
|
||||
|
||||
\continue
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\question \qt{Maximum-Likelihood-Sch\"atzer einer Ursprungsgeraden}
|
||||
In der Vorlesung haben wir folgende Formel f\"ur die Maximum-Likelihood
|
||||
Absch\"atzung der Steigung $\theta$ einer Ursprungsgeraden durch $n$ Datenpunkte $(x_i|y_i)$ mit Standardabweichung $\sigma_i$ hergeleitet:
|
||||
\[\theta = \frac{\sum_{i=1}^n \frac{x_iy_i}{\sigma_i^2}}{ \sum_{i=1}^n
|
||||
\frac{x_i^2}{\sigma_i^2}} \]
|
||||
\begin{parts}
|
||||
\part \label{mleslopefunc} Schreibe eine Funktion, die in einem $x$ und einem
|
||||
$y$ Vektor die Datenpaare \"uberreicht bekommt und die Steigung der
|
||||
Ursprungsgeraden, die die Likelihood maximiert, zur\"uckgibt
|
||||
($\sigma=\text{const}$).
|
||||
|
||||
\part
|
||||
Schreibe ein Skript, das Datenpaare erzeugt, die um eine
|
||||
Ursprungsgerade mit vorgegebener Steigung streuen. Berechne mit der
|
||||
Funktion aus \pref{mleslopefunc} die Steigung aus den Daten,
|
||||
vergleiche mit der wahren Steigung, und plotte die urspr\"ungliche
|
||||
sowie die gefittete Gerade zusammen mit den Daten.
|
||||
|
||||
\part
|
||||
Ver\"andere die Anzahl der Datenpunkte, die Steigung, sowie die
|
||||
Streuung der Daten um die Gerade.
|
||||
\end{parts}
|
||||
\begin{solution}
|
||||
\lstinputlisting{mleslope.m}
|
||||
\lstinputlisting{mlepropfit.m}
|
||||
\includegraphics[width=1\textwidth]{mlepropfit}
|
||||
\end{solution}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\question \qt{Maximum-Likelihood-Sch\"atzer einer Wahrscheinlichkeitsdichtefunktion}
|
||||
Verschiedene Wahrscheinlichkeitsdichtefunktionen haben Parameter, die
|
||||
nicht so einfach wie der Mittelwert und die Standardabweichung einer
|
||||
Normalverteilung direkt aus den Daten berechnet werden k\"onnen. Solche Parameter
|
||||
m\"ussen dann aus den Daten mit der Maximum-Likelihood-Methode gefittet werden.
|
||||
|
||||
Um dies zu veranschaulichen ziehen wir uns diesmal nicht normalverteilte Zufallszahlen, sondern Zufallszahlen aus der Gamma-Verteilung.
|
||||
\begin{parts}
|
||||
\part
|
||||
Finde heraus welche \code{matlab} Funktion die
|
||||
Wahrscheinlichkeitsdichtefunktion (probability density function) der
|
||||
Gamma-Verteilung berechnet.
|
||||
|
||||
\part
|
||||
Plotte mit Hilfe dieser Funktion die Wahrscheinlichkeitsdichtefunktion
|
||||
der Gamma-Verteilung f\"ur verschiedene Werte des (positiven) ``shape'' Parameters.
|
||||
Den ``scale'' Parameter setzen wir auf Eins.
|
||||
|
||||
\part
|
||||
Finde heraus mit welcher Funktion Gammaverteilte Zufallszahlen in
|
||||
\code{matlab} gezogen werden k\"onnen. Erzeuge mit dieser Funktion
|
||||
50 Zufallszahlen mit einem der oben geplotteten ``shape'' Parameter.
|
||||
|
||||
\part
|
||||
Berechne und plotte ein normiertes Histogramm dieser Zufallszahlen.
|
||||
|
||||
\part
|
||||
Finde heraus mit welcher \code{matlab}-Funktion eine beliebige
|
||||
Verteilung (``distribution'') an die Zufallszahlen nach der
|
||||
Maximum-Likelihood Methode gefittet werden kann. Wie wird diese
|
||||
Funktion benutzt, um die Gammaverteilung an die Daten zu fitten?
|
||||
|
||||
\part
|
||||
Bestimme mit dieser Funktion die Parameter der Gammaverteilung aus
|
||||
den Zufallszahlen.
|
||||
|
||||
\part
|
||||
Plotte anschlie{\ss}end die Gammaverteilung mit den gefitteten
|
||||
Parametern.
|
||||
\end{parts}
|
||||
\begin{solution}
|
||||
\lstinputlisting{mlepdffit.m}
|
||||
\includegraphics[width=1\textwidth]{mlepdffit}
|
||||
\end{solution}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
@ -11,11 +11,11 @@
|
||||
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
|
||||
\pagestyle{headandfoot}
|
||||
\ifprintanswers
|
||||
\newcommand{\stitle}{: L\"osungen}
|
||||
\newcommand{\stitle}{: Solutions}
|
||||
\else
|
||||
\newcommand{\stitle}{}
|
||||
\fi
|
||||
\header{{\bfseries\large \"Ubung 4\stitle}}{{\bfseries\large Statistik}}{{\bfseries\large 26. Oktober, 2015}}
|
||||
\header{{\bfseries\large Exercise 12\stitle}}{{\bfseries\large Maximum Likelihood}}{{\bfseries\large January 7th, 2019}}
|
||||
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
|
||||
jan.benda@uni-tuebingen.de}
|
||||
\runningfooter{}{\thepage}{}
|
||||
@ -89,28 +89,27 @@ jan.benda@uni-tuebingen.de}
|
||||
\begin{questions}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\question \qt{Maximum Likelihood der Standardabweichung}
|
||||
Wir wollen uns die Likelihood und die Log-Likelihood am Beispiel der
|
||||
Absch\"atzung der Standardabweichung verdeutlichen.
|
||||
\question \qt{Maximum likelihood of the standard deviation}
|
||||
Let's compute the likelihood and the log-likelihood for the estimation
|
||||
of the standard deviation.
|
||||
\begin{parts}
|
||||
\part Ziehe $n=50$ normalverteilte Zufallsvariablen mit Mittelwert $\mu=3$
|
||||
und einer Standardabweichung $\sigma=2$.
|
||||
\part Draw $n=50$ normaly distributed random numbers with mean
|
||||
$\mu=3$ and standard deviation $\sigma=2$.
|
||||
|
||||
\part
|
||||
Plotte die Likelihood (aus dem Produkt der Wahrscheinlichkeiten) und
|
||||
die Log-Likelihood (aus der Summe der logarithmierten
|
||||
Wahrscheinlichkeiten) f\"ur die Standardabweichung als Parameter. Vergleiche die
|
||||
Position der Maxima mit der aus den Daten berechneten Standardabweichung.
|
||||
\part Plot the likelihood (computed as the product of probabilities)
|
||||
and the log-likelihood (sum of the logarithms of the probabilities)
|
||||
using the standard deviation as the parameter we want to estimate
|
||||
from the data. Compare the position of the maxima with the standard
|
||||
deviation that you can compute from the data.
|
||||
|
||||
\part
|
||||
Erh\"ohe $n$ auf 1000. Was passiert mit der Likelihood, was mit der Log-Likelihood? Warum?
|
||||
\part Increase $n$ to 1000. What happens to the likelihood, what
|
||||
happens to the log-likelihood? Why?
|
||||
\end{parts}
|
||||
\begin{solution}
|
||||
\lstinputlisting{mlestd.m}
|
||||
\includegraphics[width=1\textwidth]{mlestd}
|
||||
\end{solution}
|
||||
|
||||
\continue
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\question \qt{Maximum-Likelihood-Sch\"atzer einer Ursprungsgeraden}
|
||||
In der Vorlesung haben wir folgende Formel f\"ur die Maximum-Likelihood
|
||||
|
@ -1,41 +1,41 @@
|
||||
\vspace*{-6.5ex}
|
||||
\vspace*{-8ex}
|
||||
\begin{center}
|
||||
\textbf{\Large Einf\"uhrung in die wissenschaftliche Datenverarbeitung}\\[1ex]
|
||||
\textbf{\Large Introduction to scientific computing}\\[1ex]
|
||||
{\large Jan Grewe, Jan Benda}\\[-3ex]
|
||||
Abteilung Neuroethologie \hfill --- \hfill Institut f\"ur Neurobiologie \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
|
||||
Neuroethology lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
|
||||
\end{center}
|
||||
|
||||
\ifprintanswers%
|
||||
\else
|
||||
% \ifprintanswers%
|
||||
% \else
|
||||
|
||||
% Die folgenden Aufgaben dienen der Wiederholung, \"Ubung und
|
||||
% Selbstkontrolle und sollten eigenst\"andig bearbeitet und gel\"ost
|
||||
% werden. Die L\"osung soll in Form eines einzelnen Skriptes (m-files)
|
||||
% im ILIAS hochgeladen werden. Jede Aufgabe sollte in einer eigenen
|
||||
% ``Zelle'' gel\"ost sein. Die Zellen \textbf{m\"ussen} unabh\"angig
|
||||
% voneinander ausf\"uhrbar sein. Das Skript sollte nach dem Muster:
|
||||
% ``variablen\_datentypen\_\{nachname\}.m'' benannt werden
|
||||
% (z.B. variablen\_datentypen\_mueller.m).
|
||||
% % Die folgenden Aufgaben dienen der Wiederholung, \"Ubung und
|
||||
% % Selbstkontrolle und sollten eigenst\"andig bearbeitet und gel\"ost
|
||||
% % werden. Die L\"osung soll in Form eines einzelnen Skriptes (m-files)
|
||||
% % im ILIAS hochgeladen werden. Jede Aufgabe sollte in einer eigenen
|
||||
% % ``Zelle'' gel\"ost sein. Die Zellen \textbf{m\"ussen} unabh\"angig
|
||||
% % voneinander ausf\"uhrbar sein. Das Skript sollte nach dem Muster:
|
||||
% % ``variablen\_datentypen\_\{nachname\}.m'' benannt werden
|
||||
% % (z.B. variablen\_datentypen\_mueller.m).
|
||||
|
||||
\begin{itemize}
|
||||
\item \"Uberzeuge dich von jeder einzelnen Zeile deines Codes, dass
|
||||
sie auch wirklich das macht, was sie machen soll! Teste dies mit
|
||||
kleinen Beispielen direkt in der Kommandozeile.
|
||||
\item Versuche die L\"osungen der Aufgaben m\"oglichst in
|
||||
sinnvolle kleine Funktionen herunterzubrechen.
|
||||
Sobald etwas \"ahnliches mehr als einmal berechnet werden soll,
|
||||
lohnt es sich eine Funktion daraus zu schreiben!
|
||||
\item Teste rechenintensive \code{for} Schleifen, Vektoren, Matrizen
|
||||
zuerst mit einer kleinen Anzahl von Wiederholungen oder kleiner
|
||||
Gr\"o{\ss}e, und benutze erst am Ende, wenn alles \"uberpr\"uft
|
||||
ist, eine gro{\ss}e Anzahl von Wiederholungen oder Elementen, um eine gute
|
||||
Statistik zu bekommen.
|
||||
\item Benutze die Hilfsfunktion von \code{matlab} (\code{help
|
||||
commando} oder \code{doc commando}) und das Internet, um
|
||||
herauszufinden, wie bestimmte \code{matlab} Funktionen zu verwenden
|
||||
sind und was f\"ur M\"oglichkeiten sie bieten.
|
||||
Auch zu inhaltlichen Konzepten bietet das Internet oft viele
|
||||
Antworten!
|
||||
\end{itemize}
|
||||
% \begin{itemize}
|
||||
% \item \"Uberzeuge dich von jeder einzelnen Zeile deines Codes, dass
|
||||
% sie auch wirklich das macht, was sie machen soll! Teste dies mit
|
||||
% kleinen Beispielen direkt in der Kommandozeile.
|
||||
% \item Versuche die L\"osungen der Aufgaben m\"oglichst in
|
||||
% sinnvolle kleine Funktionen herunterzubrechen.
|
||||
% Sobald etwas \"ahnliches mehr als einmal berechnet werden soll,
|
||||
% lohnt es sich eine Funktion daraus zu schreiben!
|
||||
% \item Teste rechenintensive \code{for} Schleifen, Vektoren, Matrizen
|
||||
% zuerst mit einer kleinen Anzahl von Wiederholungen oder kleiner
|
||||
% Gr\"o{\ss}e, und benutze erst am Ende, wenn alles \"uberpr\"uft
|
||||
% ist, eine gro{\ss}e Anzahl von Wiederholungen oder Elementen, um eine gute
|
||||
% Statistik zu bekommen.
|
||||
% \item Benutze die Hilfsfunktion von \code{matlab} (\code{help
|
||||
% commando} oder \code{doc commando}) und das Internet, um
|
||||
% herauszufinden, wie bestimmte \code{matlab} Funktionen zu verwenden
|
||||
% sind und was f\"ur M\"oglichkeiten sie bieten.
|
||||
% Auch zu inhaltlichen Konzepten bietet das Internet oft viele
|
||||
% Antworten!
|
||||
% \end{itemize}
|
||||
|
||||
\fi
|
||||
% \fi
|
||||
|
Reference in New Issue
Block a user