100 lines
3.4 KiB
Python
100 lines
3.4 KiB
Python
import numpy as np
|
|
import torch
|
|
import torchvision.transforms.functional as F
|
|
import glob
|
|
import os
|
|
from PIL import Image
|
|
import argparse
|
|
|
|
from model import create_model
|
|
from confic import NUM_CLASSES, DEVICE, CLASSES, OUTDIR, DATA_DIR, INFERENCE_OUTDIR, IMG_DPI, IMG_SIZE
|
|
from datasets import InferenceDataset, create_inference_loader
|
|
|
|
from IPython import embed
|
|
from pathlib import Path
|
|
from tqdm.auto import tqdm
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.gridspec as gridspec
|
|
from matplotlib.patches import Rectangle
|
|
|
|
|
|
def plot_inference(img_tensor, img_name, output, detection_threshold, dataset_name):
|
|
|
|
fig = plt.figure(figsize=IMG_SIZE, num=img_name)
|
|
gs = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1) #
|
|
ax = fig.add_subplot(gs[0, 0])
|
|
|
|
ax.imshow(img_tensor.cpu().squeeze().permute(1, 2, 0), aspect='auto')
|
|
for (x0, y0, x1, y1), l, score in zip(output['boxes'].cpu(), output['labels'].cpu(), output['scores'].cpu()):
|
|
if score < detection_threshold:
|
|
continue
|
|
# print(x0, y0, x1, y1, l)
|
|
ax.text(x0, y0, f'{score:.2f}', ha='left', va='bottom', fontsize=12, color='white')
|
|
ax.add_patch(
|
|
Rectangle((x0, y0),
|
|
(x1 - x0),
|
|
(y1 - y0),
|
|
fill=False, color="tab:green", linestyle='--', linewidth=2, zorder=10)
|
|
)
|
|
|
|
ax.set_axis_off()
|
|
plt.savefig(Path(INFERENCE_OUTDIR)/dataset_name/(os.path.splitext(img_name)[0] +'_inferred.png'), dpi=IMG_DPI)
|
|
plt.close()
|
|
# plt.show()
|
|
|
|
def infere_model(inference_loader, model, dataset_name, detection_th=0.8):
|
|
|
|
print(f'Inference on dataset: {dataset_name}')
|
|
|
|
prog_bar = tqdm(inference_loader, total=len(inference_loader))
|
|
for samples, targets in prog_bar:
|
|
images = list(image.to(DEVICE) for image in samples)
|
|
|
|
img_names = [t['image_name'] for t in targets]
|
|
targets = [{k: v for k, v in t.items() if k != 'image_name'} for t in targets]
|
|
|
|
with torch.inference_mode():
|
|
outputs = model(images)
|
|
|
|
for image, img_name, output, target in zip(images, img_names, outputs, targets):
|
|
plot_inference(image, img_name, output, detection_th, dataset_name)
|
|
|
|
|
|
def main(args):
|
|
model = create_model(num_classes=NUM_CLASSES)
|
|
checkpoint = torch.load(f'{OUTDIR}/best_model.pth', map_location=DEVICE)
|
|
model.load_state_dict(checkpoint["model_state_dict"])
|
|
model.to(DEVICE).eval()
|
|
|
|
inference_data = InferenceDataset(args.folder)
|
|
inference_loader = create_inference_loader(inference_data)
|
|
|
|
dataset_name = Path(args.folder).name
|
|
|
|
infere_model(inference_loader, model, dataset_name)
|
|
|
|
# detection_threshold = 0.8
|
|
# frame_count = 0
|
|
# total_fps = 0
|
|
# test_images = glob.glob(f"{TRAIN_DIR}/*.png")
|
|
|
|
# for i in tqdm(np.arange(len(test_images))):
|
|
# image_name = test_images[i].split(os.path.sep)[-1].split('.')[0]
|
|
#
|
|
# img = Image.open(test_images[i])
|
|
# img_tensor = F.to_tensor(img.convert('RGB')).unsqueeze(dim=0)
|
|
#
|
|
# with torch.inference_mode():
|
|
# outputs = model(img_tensor.to(DEVICE))
|
|
#
|
|
# print(len(outputs[0]['boxes']))
|
|
|
|
# show_sample(img_tensor, outputs, detection_threshold)
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Evaluated electrode array recordings with multiple fish.')
|
|
parser.add_argument('folder', type=str, help='folder to infer picutes', default='')
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|