efishSignalDetector/data/generate_dataset.py

100 lines
3.7 KiB
Python

import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchvision.transforms as T
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from pathlib import Path
from tqdm.auto import tqdm
import itertools
import sys
import os
from IPython import embed
def load_data(folder):
fill_freqs, fill_times, fill_spec = [], [], []
if os.path.exists(os.path.join(folder, 'fill_spec.npy')):
fill_freqs = np.load(os.path.join(folder, 'fill_freqs.npy'))
fill_times = np.load(os.path.join(folder, 'fill_times.npy'))
fill_spec_shape = np.load(os.path.join(folder, 'fill_spec_shape.npy'))
fill_spec = np.memmap(os.path.join(folder, 'fill_spec.npy'), dtype='float', mode='r',
shape=(fill_spec_shape[0], fill_spec_shape[1]), order='F')
elif os.path.exists(os.path.join(folder, 'fine_spec.npy')):
fill_freqs = np.load(os.path.join(folder, 'fine_freqs.npy'))
fill_times = np.load(os.path.join(folder, 'fine_times.npy'))
fill_spec_shape = np.load(os.path.join(folder, 'fine_spec_shape.npy'))
fill_spec = np.memmap(os.path.join(folder, 'fine_spec.npy'), dtype='float', mode='r',
shape=(fill_spec_shape[0], fill_spec_shape[1]), order='F')
base_path = Path(folder)
EODf_v = np.load(base_path / 'fund_v.npy')
ident_v = np.load(base_path / 'ident_v.npy')
idx_v = np.load(base_path / 'idx_v.npy')
times_v = np.load(base_path / 'times.npy')
return fill_freqs, fill_times, fill_spec, EODf_v, ident_v, idx_v, times_v
def main(folder):
min_freq, max_freq, d_freq, d_time, freq_overlap, time_overlap = (
200, 1500, 200, 50, 60*15, 60*5)
freq, times, spec, EODf_v, ident_v, idx_v, times_v = load_data(folder)
f_res, t_res = freq[1] - freq[0], times[1] - times[0]
unique_ids = np.unique(ident_v[~np.isnan(ident_v)])
pic_base = tqdm(itertools.product(
np.arange(0, times[-1], d_time),
np.arange(min_freq, max_freq, d_freq)
),
total=(max_freq-min_freq)//d_freq * times[-1] // d_time
)
for t0, f0 in pic_base:
t1 = t0 + d_time + time_overlap
f1 = f0 + d_freq + freq_overlap
present_freqs = EODf_v[(~np.isnan(ident_v)) &
(t0 <= times_v[idx_v] <= t1)]
if len(present_freqs) == 0:
continue
f_idx0, f_idx1 = np.argmin(np.abs(freq - f0)), np.argmin(np.abs(freq - f1))
t_idx0, t_idx1 = np.argmin(np.abs(times - t0)), np.argmin(np.abs(times - t1))
s = torch.from_numpy(spec[f_idx0:f_idx1, t_idx0:t_idx1].copy()).type(torch.float32)
log_s = torch.log10(s)
transformed = T.Normalize(mean=torch.mean(log_s), std=torch.std(log_s))
s_trans = transformed(log_s.unsqueeze(0))
fig_title = (f'{Path(folder).name}__{t0:.0f}s-{t1:.0f}s__{f0:.0f}-{f1:.0f}Hz').replace(' ', '0')
fig = plt.figure(figsize=(7, 7), num=fig_title)
gs = gridspec.GridSpec(1, 2, width_ratios=(8, 1), wspace=0)# , bottom=0, left=0, right=1, top=1
gs2 = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1)#
ax = fig.add_subplot(gs2[0, 0])
# cax = fig.add_subplot(gs[0, 1])
im = ax.imshow(s_trans.squeeze(), cmap='gray', aspect='auto', origin='lower', extent=(times_v[t_idx0]/3600, times_v[t_idx1]/3600 + t_res, freq[f_idx0], freq[f_idx1] + f_res))
# im = ax.imshow(log_s, cmap='gray', aspect='auto')
# ax.invert_yaxis()
# fig.colorbar(im, cax=cax)
ax.axis(False)
plt.savefig(os.path.join('train', fig_title + '.png'), dpi=256)
plt.close()
# # ax.imshow(spec[f0:f1, t0:t1], cmap='gray')
if __name__ == '__main__':
main(sys.argv[1])