efishSignalDetector/inference.py

65 lines
2.1 KiB
Python

import numpy as np
import torch
import torchvision.transforms.functional as F
import glob
import os
from PIL import Image
from model import create_model
from confic import NUM_CLASSES, DEVICE, CLASSES, OUTDIR, TRAIN_DIR
from datasets import create_train_or_test_dataset, create_valid_loader
from IPython import embed
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
def show_sample(img_tensor, outputs, detection_threshold):
fig, ax = plt.subplots()
ax.imshow(img_tensor.squeeze().permute(1, 2, 0), aspect='auto')
for (x0, y0, x1, y1), l, score in zip(outputs[0]['boxes'].cpu(), outputs[0]['labels'].cpu(), outputs[0]['scores'].cpu()):
if score < detection_threshold:
continue
# print(x0, y0, x1, y1, l)
ax.text(x0, y0, f'{score:.2f}', ha='left', va='bottom', fontsize=12, color='white')
ax.add_patch(
Rectangle((x0, y0),
(x1 - x0),
(y1 - y0),
fill=False, color="white", linewidth=2, zorder=10)
)
plt.show()
def infere_model(test_loader, model, detection_th=0.8)
if __name__ == '__main__':
model = create_model(num_classes=NUM_CLASSES)
checkpoint = torch.load(f'{OUTDIR}/best_model.pth', map_location=DEVICE)
model.load_state_dict(checkpoint["model_state_dict"])
model.to(DEVICE).eval()
# test_data = create_train_or_test_dataset(TRAIN_DIR, train=False)
# test_loader = create_valid_loader(test_data)
# infere_model(test_loader, model)
detection_threshold = 0.8
frame_count = 0
total_fps = 0
test_images = glob.glob(f"{TRAIN_DIR}/*.png")
for i in tqdm(np.arange(len(test_images))):
image_name = test_images[i].split(os.path.sep)[-1].split('.')[0]
img = Image.open(test_images[i])
img_tensor = F.to_tensor(img.convert('RGB')).unsqueeze(dim=0)
with torch.inference_mode():
outputs = model(img_tensor.to(DEVICE))
print(len(outputs[0]['boxes']))
# show_sample(img_tensor, outputs, detection_threshold)