efishSignalDetector/data/generate_dataset.py
2023-10-20 13:14:57 +02:00

185 lines
8.6 KiB
Python

import time
import numpy as np
import argparse
import torch
from torch import nn
import torch.nn.functional as F
import torchvision.transforms as T
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from pathlib import Path
from tqdm.auto import tqdm
import itertools
import sys
import os
from IPython import embed
from matplotlib.patches import Rectangle
# from matplotlib.collections import PatchCollection
def load_data(folder):
fill_freqs, fill_times, fill_spec = [], [], []
if os.path.exists(os.path.join(folder, 'fill_spec.npy')):
fill_freqs = np.load(os.path.join(folder, 'fill_freqs.npy'))
fill_times = np.load(os.path.join(folder, 'fill_times.npy'))
fill_spec_shape = np.load(os.path.join(folder, 'fill_spec_shape.npy'))
fill_spec = np.memmap(os.path.join(folder, 'fill_spec.npy'), dtype='float', mode='r',
shape=(fill_spec_shape[0], fill_spec_shape[1]), order='F')
elif os.path.exists(os.path.join(folder, 'fine_spec.npy')):
fill_freqs = np.load(os.path.join(folder, 'fine_freqs.npy'))
fill_times = np.load(os.path.join(folder, 'fine_times.npy'))
fill_spec_shape = np.load(os.path.join(folder, 'fine_spec_shape.npy'))
fill_spec = np.memmap(os.path.join(folder, 'fine_spec.npy'), dtype='float', mode='r',
shape=(fill_spec_shape[0], fill_spec_shape[1]), order='F')
base_path = Path(folder)
EODf_v = np.load(base_path / 'fund_v.npy')
ident_v = np.load(base_path / 'ident_v.npy')
idx_v = np.load(base_path / 'idx_v.npy')
times_v = np.load(base_path / 'times.npy')
fish_freq = np.load(base_path / 'analysis' / 'fish_freq.npy')
rise_idx = np.load(base_path / 'analysis' / 'rise_idx.npy')
rise_size = np.load(base_path / 'analysis' / 'rise_size.npy')
fish_baseline_freq = np.load(base_path / 'analysis' / 'baseline_freqs.npy')
fish_baseline_freq_time = np.load(base_path / 'analysis' / 'baseline_freq_times.npy')
return fill_freqs, fill_times, fill_spec, EODf_v, ident_v, idx_v, times_v, fish_freq, rise_idx, rise_size, fish_baseline_freq, fish_baseline_freq_time
def save_spec_pic(folder, s_trans, times, freq, t_idx0, t_idx1, f_idx0, f_idx1, t_res, f_res):
fig_title = (f'{Path(folder).name}__{t0:.0f}s-{t1:.0f}s__{f0:4.0f}-{f1:4.0f}Hz').replace(' ', '0')
fig = plt.figure(figsize=(7, 7), num=fig_title)
gs = gridspec.GridSpec(1, 2, width_ratios=(8, 1), wspace=0) # , bottom=0, left=0, right=1, top=1
gs2 = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1) #
ax = fig.add_subplot(gs2[0, 0])
im = ax.imshow(s_trans.squeeze(), cmap='gray', aspect='auto', origin='lower',
extent=(times[t_idx0] / 3600, times[t_idx1] / 3600 + t_res, freq[f_idx0], freq[f_idx1] + f_res))
ax.axis(False)
plt.savefig(os.path.join('train', fig_title + '.png'), dpi=256)
plt.close()
def main(args):
min_freq = 200
max_freq = 1500
d_freq = 200
freq_overlap = 50
d_time = 60*15
time_overlap = 60*5
freq, times, spec, EODf_v, ident_v, idx_v, times_v, fish_freq, rise_idx, rise_size, fish_baseline_freq, fish_baseline_freq_time = (
load_data(args.folder))
f_res, t_res = freq[1] - freq[0], times[1] - times[0]
unique_ids = np.unique(ident_v[~np.isnan(ident_v)])
pic_base = tqdm(itertools.product(
np.arange(0, times[-1], d_time),
np.arange(min_freq, max_freq, d_freq)
),
total=int(((max_freq-min_freq)//d_freq) * (times[-1] // d_time))
)
for t0, f0 in pic_base:
t1 = t0 + d_time + time_overlap
f1 = f0 + d_freq + freq_overlap
present_freqs = EODf_v[(~np.isnan(ident_v)) &
(t0 <= times_v[idx_v]) &
(times_v[idx_v] <= t1) &
(EODf_v >= f0) &
(EODf_v <= f1)]
if len(present_freqs) == 0:
continue
f_idx0, f_idx1 = np.argmin(np.abs(freq - f0)), np.argmin(np.abs(freq - f1))
t_idx0, t_idx1 = np.argmin(np.abs(times - t0)), np.argmin(np.abs(times - t1))
s = torch.from_numpy(spec[f_idx0:f_idx1, t_idx0:t_idx1].copy()).type(torch.float32)
log_s = torch.log10(s)
transformed = T.Normalize(mean=torch.mean(log_s), std=torch.std(log_s))
s_trans = transformed(log_s.unsqueeze(0))
if not args.dev:
save_spec_pic(args.folder, s_trans, times, freq, t_idx0, t_idx1, f_idx0, f_idx1, t_res, f_res)
else:
fig_title = (f'{Path(args.folder).name}__{t0:.0f}s-{t1:.0f}s__{f0:4.0f}-{f1:4.0f}Hz').replace(' ', '0')
fig = plt.figure(figsize=(10, 7), num=fig_title)
gs = gridspec.GridSpec(1, 2, width_ratios=(8, 1), wspace=0, left=0.1, bottom=0.1, right=0.9, top=0.95) # , bottom=0, left=0, right=1, top=1
ax = fig.add_subplot(gs[0, 0])
cax = fig.add_subplot(gs[0, 1])
im = ax.imshow(s_trans.squeeze(), cmap='gray', aspect='auto', origin='lower',
extent=(times[t_idx0], times[t_idx1] + t_res, freq[f_idx0], freq[f_idx1] + f_res))
fig.colorbar(im, cax=cax, orientation='vertical')
times_v_idx0, times_v_idx1 = np.argmin(np.abs(times_v - t0)), np.argmin(np.abs(times_v - t1))
for id_idx in range(len(fish_freq)):
ax.plot(times_v[times_v_idx0:times_v_idx1], fish_freq[id_idx][times_v_idx0:times_v_idx1], marker='.', color='k', markersize=4)
rise_idx_oi = np.array(rise_idx[id_idx][
(rise_idx[id_idx] >= times_v_idx0) &
(rise_idx[id_idx] <= times_v_idx1) &
(rise_size[id_idx] >= 10)], dtype=int)
rise_size_oi = rise_size[id_idx][(rise_idx[id_idx] >= times_v_idx0) &
(rise_idx[id_idx] <= times_v_idx1) &
(rise_size[id_idx] >= 10)]
ax.plot(times_v[rise_idx_oi], fish_freq[id_idx][rise_idx_oi], 'o', color='tab:red')
if len(rise_idx_oi) > 0:
closest_baseline_idx = list(map(lambda x: np.argmin(np.abs(fish_baseline_freq_time - x)), times_v[rise_idx_oi]))
closest_baseline_freq = fish_baseline_freq[id_idx][closest_baseline_idx]
upper_freq_bound = closest_baseline_freq + rise_size_oi
lower_freq_bound = closest_baseline_freq
left_time_bound = times_v[rise_idx_oi]
right_time_bound = np.zeros_like(left_time_bound)
for enu, Ct_oi in enumerate(times_v[rise_idx_oi]):
Crise_size = rise_size_oi[enu]
Cblf = closest_baseline_freq[enu]
rise_end_t = times_v[(times_v > Ct_oi) & (fish_freq[id_idx] < Cblf + Crise_size * 0.37)]
if len(rise_end_t) == 0:
right_time_bound[enu] = np.nan
else:
right_time_bound[enu] = rise_end_t[0]
print(f'f0: {lower_freq_bound}')
print(f'f1: {upper_freq_bound}')
print(f't0: {left_time_bound}')
print(f't1: {right_time_bound}')
plt.show()
# Create patch collection with specified colour/alpha
for enu in range(len(left_time_bound)):
if np.isnan(right_time_bound[enu]):
continue
ax.add_patch(
Rectangle((left_time_bound[enu], right_time_bound[enu]),
(right_time_bound[enu] - left_time_bound[enu]),
(upper_freq_bound[enu] - lower_freq_bound[enu]),
fill=False, color="white", linewidth=2)
)
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluated electrode array recordings with multiple fish.')
parser.add_argument('folder', type=str, help='single recording analysis', default='')
parser.add_argument('-d', "--dev", action="store_true", help="developer mode; no data saved")
# parser.add_argument('-x', type=int, nargs=2, default=[1272, 1282], help='x-borders of LED detect area (in pixels)')
# parser.add_argument('-y', type=int, nargs=2, default=[1500, 1516], help='y-borders of LED area (in pixels)')
args = parser.parse_args()
main(args)