efishSignalDetector/inference.py
2023-10-26 10:14:44 +02:00

98 lines
3.3 KiB
Python

import numpy as np
import torch
import torchvision.transforms.functional as F
import glob
import os
from PIL import Image
from model import create_model
from confic import NUM_CLASSES, DEVICE, CLASSES, OUTDIR, TRAIN_DIR, INFERENCE_OUTDIR, IMG_DPI, IMG_SIZE
from datasets import create_train_or_test_dataset, create_valid_loader
from IPython import embed
from pathlib import Path
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.patches import Rectangle
def plot_inference(img_tensor, img_name, output, target, detection_threshold):
fig = plt.figure(figsize=IMG_SIZE, num=img_name)
gs = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1) #
ax = fig.add_subplot(gs[0, 0])
ax.imshow(img_tensor.cpu().squeeze().permute(1, 2, 0), aspect='auto')
for (x0, y0, x1, y1), l, score in zip(output['boxes'].cpu(), output['labels'].cpu(), output['scores'].cpu()):
if score < detection_threshold:
continue
# print(x0, y0, x1, y1, l)
ax.text(x0, y0, f'{score:.2f}', ha='left', va='bottom', fontsize=12, color='white')
ax.add_patch(
Rectangle((x0, y0),
(x1 - x0),
(y1 - y0),
fill=False, color="tab:green", linestyle='--', linewidth=2, zorder=10)
)
for (x0, y0, x1, y1), l in zip(target['boxes'], target['labels']):
ax.add_patch(
Rectangle((x0, y0),
(x1 - x0),
(y1 - y0),
fill=False, color="white", linewidth=2, zorder=9)
)
ax.set_axis_off()
embed()
quit()
plt.savefig(Path(INFERENCE_OUTDIR)/(os.path.splitext(img_name)[0] +'_inferred.png'), IMG_DPI)
plt.close()
# plt.show()
def infere_model(test_loader, model, detection_th=0.8):
print('Validation')
prog_bar = tqdm(test_loader, total=len(test_loader))
for samples, targets in prog_bar:
images = list(image.to(DEVICE) for image in samples)
img_names = [t['image_name'] for t in targets]
targets = [{k: v for k, v in t.items() if k != 'image_name'} for t in targets]
with torch.inference_mode():
outputs = model(images)
for image, img_name, output, target in zip(images, img_names, outputs, targets):
plot_inference(image, img_name, output, target, detection_th)
if __name__ == '__main__':
model = create_model(num_classes=NUM_CLASSES)
checkpoint = torch.load(f'{OUTDIR}/best_model.pth', map_location=DEVICE)
model.load_state_dict(checkpoint["model_state_dict"])
model.to(DEVICE).eval()
test_data = create_train_or_test_dataset(TRAIN_DIR, train=False)
test_loader = create_valid_loader(test_data)
infere_model(test_loader, model)
# detection_threshold = 0.8
# frame_count = 0
# total_fps = 0
# test_images = glob.glob(f"{TRAIN_DIR}/*.png")
# for i in tqdm(np.arange(len(test_images))):
# image_name = test_images[i].split(os.path.sep)[-1].split('.')[0]
#
# img = Image.open(test_images[i])
# img_tensor = F.to_tensor(img.convert('RGB')).unsqueeze(dim=0)
#
# with torch.inference_mode():
# outputs = model(img_tensor.to(DEVICE))
#
# print(len(outputs[0]['boxes']))
# show_sample(img_tensor, outputs, detection_threshold)