163 lines
5.5 KiB
Python
163 lines
5.5 KiB
Python
from confic import (DEVICE, NUM_CLASSES, NUM_EPOCHS, OUTDIR, NUM_WORKERS, DATA_DIR, IMG_SIZE, IMG_DPI, INFERENCE_OUTDIR)
|
|
from model import create_model
|
|
from datasets import create_train_loader, create_valid_loader, custom_train_test_split
|
|
from custom_utils import Averager, SaveBestModel, save_model, save_loss_plot
|
|
|
|
from tqdm.auto import tqdm
|
|
|
|
import os
|
|
import torch
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.gridspec as gridspec
|
|
from matplotlib.patches import Rectangle
|
|
import time
|
|
|
|
import pathlib
|
|
from pathlib import Path
|
|
|
|
from IPython import embed
|
|
|
|
def train(train_loader, model, optimizer, train_loss):
|
|
print('Training')
|
|
|
|
prog_bar = tqdm(train_loader, total=len(train_loader))
|
|
for samples, targets in prog_bar:
|
|
images = list(image.to(DEVICE) for image in samples)
|
|
# img_names = [t['image_name'] for t in targets]
|
|
targets = [{k: v.to(DEVICE) for k, v in t.items() if k != 'image_name'} for t in targets]
|
|
|
|
loss_dict = model(images, targets)
|
|
|
|
losses = sum(loss for loss in loss_dict.values())
|
|
loss_value = losses.item()
|
|
train_loss_hist.send(loss_value) # this is a global instance !!!
|
|
train_loss.append(loss_value)
|
|
|
|
optimizer.zero_grad()
|
|
losses.backward()
|
|
optimizer.step()
|
|
|
|
prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")
|
|
|
|
return train_loss
|
|
|
|
def validate(test_loader, model, val_loss):
|
|
print('Validation')
|
|
|
|
prog_bar = tqdm(test_loader, total=len(test_loader))
|
|
for samples, targets in prog_bar:
|
|
images = list(image.to(DEVICE) for image in samples)
|
|
targets = [{k: v.to(DEVICE) for k, v in t.items() if k != 'image_name'} for t in targets]
|
|
|
|
with torch.inference_mode():
|
|
loss_dict = model(images, targets)
|
|
|
|
losses = sum(loss for loss in loss_dict.values())
|
|
loss_value = losses.item()
|
|
val_loss_hist.send(loss_value) # this is a global instance !!!
|
|
val_loss.append(loss_value)
|
|
prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")
|
|
|
|
return val_loss
|
|
|
|
def best_model_validation_with_plots(test_loader):
|
|
model = create_model(num_classes=NUM_CLASSES)
|
|
checkpoint = torch.load(f'{OUTDIR}/best_model.pth', map_location=DEVICE)
|
|
model.load_state_dict(checkpoint["model_state_dict"])
|
|
model.to(DEVICE).eval()
|
|
|
|
if not pathlib.Path(Path(INFERENCE_OUTDIR)/Path(DATA_DIR).name).exists():
|
|
pathlib.Path(Path(INFERENCE_OUTDIR)/Path(DATA_DIR).name).mkdir(parents=True, exist_ok=True)
|
|
validate_with_plots(test_loader, model)
|
|
|
|
|
|
def validate_with_plots(test_loader, model, detection_th=0.8):
|
|
print('Final validation with image putput')
|
|
|
|
prog_bar = tqdm(test_loader, total=len(test_loader))
|
|
for samples, targets in prog_bar:
|
|
images = list(image.to(DEVICE) for image in samples)
|
|
|
|
img_names = [t['image_name'] for t in targets]
|
|
targets = [{k: v for k, v in t.items() if k != 'image_name'} for t in targets]
|
|
|
|
with torch.inference_mode():
|
|
outputs = model(images)
|
|
|
|
for image, img_name, output, target in zip(images, img_names, outputs, targets):
|
|
plot_validation(image, img_name, output, target, detection_th)
|
|
|
|
|
|
def plot_validation(img_tensor, img_name, output, target, detection_threshold):
|
|
|
|
fig = plt.figure(figsize=IMG_SIZE, num=img_name)
|
|
gs = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1) #
|
|
ax = fig.add_subplot(gs[0, 0])
|
|
|
|
ax.imshow(img_tensor.cpu().squeeze().permute(1, 2, 0), aspect='auto')
|
|
for (x0, y0, x1, y1), l, score in zip(output['boxes'].cpu(), output['labels'].cpu(), output['scores'].cpu()):
|
|
if score < detection_threshold:
|
|
continue
|
|
# print(x0, y0, x1, y1, l)
|
|
ax.text(x0, y0, f'{score:.2f}', ha='left', va='bottom', fontsize=12, color='white')
|
|
ax.add_patch(
|
|
Rectangle((x0, y0),
|
|
(x1 - x0),
|
|
(y1 - y0),
|
|
fill=False, color="tab:green", linestyle='--', linewidth=2, zorder=10)
|
|
)
|
|
for (x0, y0, x1, y1), l in zip(target['boxes'], target['labels']):
|
|
ax.add_patch(
|
|
Rectangle((x0, y0),
|
|
(x1 - x0),
|
|
(y1 - y0),
|
|
fill=False, color="white", linewidth=2, zorder=9)
|
|
)
|
|
|
|
ax.set_axis_off()
|
|
|
|
plt.savefig(Path(INFERENCE_OUTDIR)/Path(DATA_DIR).name/(os.path.splitext(img_name)[0] +'_predicted.png'), dpi=IMG_DPI)
|
|
plt.close()
|
|
# plt.show()
|
|
|
|
if __name__ == '__main__':
|
|
|
|
train_data, test_data = custom_train_test_split()
|
|
|
|
train_loader = create_train_loader(train_data)
|
|
test_loader = create_valid_loader(test_data)
|
|
|
|
model = create_model(num_classes=NUM_CLASSES)
|
|
model = model.to(DEVICE)
|
|
|
|
params = [p for p in model.parameters() if p.requires_grad]
|
|
optimizer = torch.optim.SGD(params, lr=0.001, momentum=0.9, weight_decay=0.0005)
|
|
|
|
train_loss_hist = Averager()
|
|
val_loss_hist = Averager()
|
|
train_loss = []
|
|
val_loss = []
|
|
|
|
save_best_model = SaveBestModel()
|
|
|
|
for epoch in range(NUM_EPOCHS):
|
|
print(f'\n--- Epoch {epoch+1}/{NUM_EPOCHS} ---')
|
|
|
|
train_loss_hist.reset()
|
|
val_loss_hist.reset()
|
|
|
|
train_loss = train(train_loader, model, optimizer, train_loss)
|
|
|
|
val_loss = validate(test_loader, model, val_loss)
|
|
|
|
|
|
save_best_model(
|
|
val_loss_hist.value, epoch, model, optimizer
|
|
)
|
|
|
|
save_model(epoch, model, optimizer)
|
|
|
|
save_loss_plot(OUTDIR, train_loss, val_loss)
|
|
|
|
# load best model and perform inference with plot output
|
|
best_model_validation_with_plots(test_loader) |