import numpy as np import torch import torchvision.transforms.functional as F import glob import os from PIL import Image from model import create_model from confic import NUM_CLASSES, DEVICE, CLASSES, OUTDIR from IPython import embed from tqdm.auto import tqdm import matplotlib.pyplot as plt from matplotlib.patches import Rectangle def show_sample(img_tensor, outputs, detection_threshold): # embed() # quit() fig, ax = plt.subplots() ax.imshow(img_tensor.squeeze().permute(1, 2, 0), aspect='auto') for (x0, y0, x1, y1), l, score in zip(outputs[0]['boxes'].cpu(), outputs[0]['labels'].cpu(), outputs[0]['scores'].cpu()): if score < detection_threshold: continue # print(x0, y0, x1, y1, l) ax.text(x0, y0, f'{score:.2f}', ha='left', va='bottom', fontsize=12, color='white') ax.add_patch( Rectangle((x0, y0), (x1 - x0), (y1 - y0), fill=False, color="white", linewidth=2, zorder=10) ) plt.show() if __name__ == '__main__': model = create_model(num_classes=NUM_CLASSES) checkpoint = torch.load(f'{OUTDIR}/best_model.pth', map_location=DEVICE) model.load_state_dict(checkpoint["model_state_dict"]) model.to(DEVICE).eval() DIR_TEST = 'data/train' test_images = glob.glob(f"{DIR_TEST}/*.png") detection_threshold = 0.8 frame_count = 0 total_fps = 0 for i in tqdm(np.arange(len(test_images))): image_name = test_images[i].split(os.path.sep)[-1].split('.')[0] img = Image.open(test_images[i]) img_tensor = F.to_tensor(img.convert('RGB')).unsqueeze(dim=0) with torch.inference_mode(): outputs = model(img_tensor.to(DEVICE)) print(len(outputs[0]['boxes'])) show_sample(img_tensor, outputs, detection_threshold)