import torch import pathlib BATCH_SIZE = 8 RESIZE_TO = 416 NUM_EPOCHS = 10 NUM_WORKERS = 4 IMG_SIZE = (7, 7) # inches IMG_DPI = 256 DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') CLASSES = ['__backgroud__', '1'] NUM_CLASSES = len(CLASSES) DATA_DIR = 'data/dataset' OUTDIR = 'model_outputs' INFERENCE_OUTDIR = 'inference_outputs' for required_folders in [DATA_DIR, OUTDIR, INFERENCE_OUTDIR]: if not pathlib.Path(required_folders).exists(): pathlib.Path(required_folders).mkdir(parents=True, exist_ok=True)