from confic import (DEVICE, NUM_CLASSES, NUM_EPOCHS, OUTDIR, NUM_WORKERS, TRAIN_DIR) from model import create_model from tqdm.auto import tqdm from datasets import create_train_test_dataset, create_train_loader, create_valid_loader import torch import matplotlib.pyplot as plt import time from IPython import embed if __name__ == '__main__': train_data, test_data = create_train_test_dataset(TRAIN_DIR) train_loader = create_train_loader(train_data) test_loader = create_train_loader(test_data) model = create_model(num_classes=1) model = model.to(DEVICE) params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.001, momentum=0.9, weight_decay=0.0005) for epoch in range(NUM_EPOCHS): prog_bar = tqdm(train_loader, total=len(train_loader)) for samples, targets in prog_bar: images = list(image.to(DEVICE) for image in samples) targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets] try: loss_dict = model(images, targets) except: embed() quit() losses = sum(loss for loss in loss_dict.values()) loss_value = losses.item() optimizer.zero_grad() losses.backward() optimizer.step() prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")