generate dataset
This commit is contained in:
parent
c6f4d95ba5
commit
fe9886bb9a
86
data/generate_dataset.py
Normal file
86
data/generate_dataset.py
Normal file
@ -0,0 +1,86 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision.transforms as T
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.gridspec as gridspec
|
||||
from pathlib import Path
|
||||
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
import itertools
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
from IPython import embed
|
||||
|
||||
|
||||
def load_data(folder):
|
||||
fill_freqs, fill_times, fill_spec = [], [], []
|
||||
|
||||
if os.path.exists(os.path.join(folder, 'fill_spec.npy')):
|
||||
fill_freqs = np.load(os.path.join(folder, 'fill_freqs.npy'))
|
||||
fill_times = np.load(os.path.join(folder, 'fill_times.npy'))
|
||||
fill_spec_shape = np.load(os.path.join(folder, 'fill_spec_shape.npy'))
|
||||
fill_spec = np.memmap(os.path.join(folder, 'fill_spec.npy'), dtype='float', mode='r',
|
||||
shape=(fill_spec_shape[0], fill_spec_shape[1]), order='F')
|
||||
|
||||
elif os.path.exists(os.path.join(folder, 'fine_spec.npy')):
|
||||
fill_freqs = np.load(os.path.join(folder, 'fine_freqs.npy'))
|
||||
fill_times = np.load(os.path.join(folder, 'fine_times.npy'))
|
||||
fill_spec_shape = np.load(os.path.join(folder, 'fine_spec_shape.npy'))
|
||||
fill_spec = np.memmap(os.path.join(folder, 'fine_spec.npy'), dtype='float', mode='r',
|
||||
shape=(fill_spec_shape[0], fill_spec_shape[1]), order='F')
|
||||
|
||||
base_path = Path(folder)
|
||||
EODf_v = np.load(base_path / 'fund_v.npy')
|
||||
ident_v = np.load(base_path / 'ident_v.npy')
|
||||
idx_v = np.load(base_path / 'idx_v.npy')
|
||||
times_v = np.load(base_path / 'times.npy')
|
||||
|
||||
return fill_freqs, fill_times, fill_spec, EODf_v, ident_v, idx_v, times_v
|
||||
|
||||
|
||||
def main(folder):
|
||||
freq, times, spec, EODf_v, ident_v, idx_v, times_v = load_data(folder)
|
||||
|
||||
unique_ids = np.unique(ident_v[~np.isnan(ident_v)])
|
||||
|
||||
for t0, f0 in tqdm(list(itertools.product(np.arange(0, times_v[-1], 60*15), np.arange(200, 1500, 200)))):
|
||||
t1 = t0 + 60*20
|
||||
f1 = f0 + 250
|
||||
|
||||
f_idx0, f_idx1 = np.argmin(np.abs(freq - f0)), np.argmin(np.abs(freq - f1))
|
||||
t_idx0, t_idx1 = np.argmin(np.abs(times_v - t0)), np.argmin(np.abs(times_v - t1))
|
||||
|
||||
s = torch.from_numpy(spec[f_idx0:f_idx1, t_idx0:t_idx1].copy()).type(torch.float32)
|
||||
log_s = torch.log10(s)
|
||||
# s_normed = F.normalize(s.view(-1)).view(s.shape[0], s.shape[1])
|
||||
|
||||
transformed = T.Normalize(mean=torch.mean(log_s), std=torch.std(log_s))
|
||||
s_trans = transformed(log_s.unsqueeze(0))
|
||||
|
||||
fig_title = (f'{Path(folder).name}__{t0:.0f}s-{t1:.0f}s__{f0:.0f}-{f1:.0f}Hz').replace(' ', '0')
|
||||
fig = plt.figure(figsize=(10, 7), num=fig_title)
|
||||
gs = gridspec.GridSpec(1, 2, width_ratios=(8, 1), wspace=0)# , bottom=0, left=0, right=1, top=1
|
||||
gs2 = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1)#
|
||||
ax = fig.add_subplot(gs2[0, 0])
|
||||
# cax = fig.add_subplot(gs[0, 1])
|
||||
im = ax.imshow(s_trans.squeeze(), cmap='gray', aspect='auto', origin='lower', extent=(times_v[t_idx0]/3600, times_v[t_idx1+1]/3600, freq[f_idx0], freq[f_idx1+1]))
|
||||
# im = ax.imshow(log_s, cmap='gray', aspect='auto')
|
||||
# ax.invert_yaxis()
|
||||
# fig.colorbar(im, cax=cax)
|
||||
ax.axis(False)
|
||||
|
||||
plt.savefig(fig_title + '.png', dpi=300)
|
||||
plt.close()
|
||||
# # ax.imshow(spec[f0:f1, t0:t1], cmap='gray')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(sys.argv[1])
|
Loading…
Reference in New Issue
Block a user