bf
This commit is contained in:
parent
7a8790d9af
commit
ec6afb0354
@ -47,6 +47,8 @@ def main(folder):
|
|||||||
|
|
||||||
unique_ids = np.unique(ident_v[~np.isnan(ident_v)])
|
unique_ids = np.unique(ident_v[~np.isnan(ident_v)])
|
||||||
|
|
||||||
|
f_res, t_res = freq[1] - freq[0], times[1] - times[0]
|
||||||
|
|
||||||
for t0, f0 in tqdm(list(itertools.product(np.arange(0, times_v[-1], 60*15), np.arange(200, 1500, 200)))):
|
for t0, f0 in tqdm(list(itertools.product(np.arange(0, times_v[-1], 60*15), np.arange(200, 1500, 200)))):
|
||||||
t1 = t0 + 60*20
|
t1 = t0 + 60*20
|
||||||
f1 = f0 + 250
|
f1 = f0 + 250
|
||||||
@ -54,6 +56,7 @@ def main(folder):
|
|||||||
f_idx0, f_idx1 = np.argmin(np.abs(freq - f0)), np.argmin(np.abs(freq - f1))
|
f_idx0, f_idx1 = np.argmin(np.abs(freq - f0)), np.argmin(np.abs(freq - f1))
|
||||||
t_idx0, t_idx1 = np.argmin(np.abs(times_v - t0)), np.argmin(np.abs(times_v - t1))
|
t_idx0, t_idx1 = np.argmin(np.abs(times_v - t0)), np.argmin(np.abs(times_v - t1))
|
||||||
|
|
||||||
|
|
||||||
s = torch.from_numpy(spec[f_idx0:f_idx1, t_idx0:t_idx1].copy()).type(torch.float32)
|
s = torch.from_numpy(spec[f_idx0:f_idx1, t_idx0:t_idx1].copy()).type(torch.float32)
|
||||||
log_s = torch.log10(s)
|
log_s = torch.log10(s)
|
||||||
# s_normed = F.normalize(s.view(-1)).view(s.shape[0], s.shape[1])
|
# s_normed = F.normalize(s.view(-1)).view(s.shape[0], s.shape[1])
|
||||||
@ -67,7 +70,7 @@ def main(folder):
|
|||||||
gs2 = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1)#
|
gs2 = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1)#
|
||||||
ax = fig.add_subplot(gs2[0, 0])
|
ax = fig.add_subplot(gs2[0, 0])
|
||||||
# cax = fig.add_subplot(gs[0, 1])
|
# cax = fig.add_subplot(gs[0, 1])
|
||||||
im = ax.imshow(s_trans.squeeze(), cmap='gray', aspect='auto', origin='lower', extent=(times_v[t_idx0]/3600, times_v[t_idx1+1]/3600, freq[f_idx0], freq[f_idx1+1]))
|
im = ax.imshow(s_trans.squeeze(), cmap='gray', aspect='auto', origin='lower', extent=(times_v[t_idx0]/3600, times_v[t_idx1]/3600 + t_res, freq[f_idx0], freq[f_idx1] + f_res))
|
||||||
# im = ax.imshow(log_s, cmap='gray', aspect='auto')
|
# im = ax.imshow(log_s, cmap='gray', aspect='auto')
|
||||||
# ax.invert_yaxis()
|
# ax.invert_yaxis()
|
||||||
# fig.colorbar(im, cax=cax)
|
# fig.colorbar(im, cax=cax)
|
||||||
|
Loading…
Reference in New Issue
Block a user