train test split implemented using different csv files

This commit is contained in:
Till Raab 2023-10-25 15:31:00 +02:00
parent ecf110e051
commit e1a97ac493
2 changed files with 40 additions and 13 deletions

View File

@ -20,14 +20,21 @@ from custom_utils import collate_fn
from IPython import embed
class CustomDataset(Dataset):
def __init__(self, dir_path, use_idxs = None):
def __init__(self, dir_path, bbox_df):
self.dir_path = dir_path
self.image_paths = glob.glob(f'{self.dir_path}/*.png')
self.all_images = [img_path.split(os.path.sep)[-1] for img_path in self.image_paths]
self.all_images = np.array(sorted(self.all_images), dtype=str)
if hasattr(use_idxs, '__len__'):
self.all_images = self.all_images[use_idxs]
self.bbox_df = pd.read_csv(os.path.join(dir_path, 'bbox_dataset.csv'), sep=',', index_col=0)
self.bbox_df = bbox_df
self.all_images = np.array(sorted(self.bbox_df['image']), dtype=str)
self.image_paths = list(map(lambda x: Path(self.dir_path)/x, self.all_images))
# embed()
# quit()
# self.image_paths = glob.glob(f'{self.dir_path}/*.png')
# self.all_images = [img_path.split(os.path.sep)[-1] for img_path in self.image_paths]
# self.all_images = np.array(sorted(self.all_images), dtype=str)
# if hasattr(use_idxs, '__len__'):
# self.all_images = self.all_images[use_idxs]
# self.bbox_df = pd.read_csv(os.path.join(dir_path, 'bbox_dataset.csv'), sep=',', index_col=0)
def __getitem__(self, idx):
image_name = self.all_images[idx]
@ -66,11 +73,27 @@ def create_train_test_dataset(path, test_size=0.2):
train_idx = train_test_idx[int(test_size*len(train_test_idx)):]
test_idx = train_test_idx[:int(test_size*len(train_test_idx))]
train_data = CustomDataset(path, use_idxs=train_idx)
test_data = CustomDataset(path, use_idxs=test_idx)
train_data = CustomDataset(path)
test_data = CustomDataset(path)
return train_data, test_data
def create_train_or_test_dataset(path, train=True):
if train == True:
pfx='train'
print('Generate train dataset !')
else:
print('Generate test dataset !')
pfx='test'
csv_candidates = list(Path(path).rglob(f'*{pfx}*.csv'))
if len(csv_candidates) == 0:
print(f'no .csv files for *{pfx}* found in {Path(path)}')
quit()
else:
bboxes = pd.read_csv(csv_candidates[0], sep=',', index_col=0)
return CustomDataset(path, bboxes)
def create_train_loader(train_dataset, num_workers=0):
train_loader = DataLoader(
train_dataset,
@ -93,12 +116,14 @@ def create_valid_loader(valid_dataset, num_workers=0):
if __name__ == '__main__':
train_data, test_data = create_train_test_dataset(TRAIN_DIR)
# train_data, test_data = create_train_test_dataset(TRAIN_DIR)
train_data = create_train_or_test_dataset(TRAIN_DIR)
test_data = create_train_or_test_dataset(TRAIN_DIR, train=False)
train_loader = create_train_loader(train_data)
test_loader = create_valid_loader(test_data)
for samples, targets in train_loader:
for samples, targets in test_loader:
for s, t in zip(samples, targets):
fig, ax = plt.subplots()
ax.imshow(s.permute(1, 2, 0), aspect='auto')

View File

@ -3,7 +3,7 @@ from model import create_model
from tqdm.auto import tqdm
from datasets import create_train_test_dataset, create_train_loader, create_valid_loader
from datasets import create_train_loader, create_valid_loader, create_train_or_test_dataset
from custom_utils import Averager, SaveBestModel, save_model, save_loss_plot
import torch
@ -62,7 +62,9 @@ def validate(test_loader, model, val_loss):
return val_loss
if __name__ == '__main__':
train_data, test_data = create_train_test_dataset(TRAIN_DIR)
train_data = create_train_or_test_dataset(TRAIN_DIR)
test_data = create_train_or_test_dataset(TRAIN_DIR, train=False)
train_loader = create_train_loader(train_data)
test_loader = create_train_loader(test_data)