diff --git a/confic.py b/confic.py
new file mode 100644
index 0000000..acb0397
--- /dev/null
+++ b/confic.py
@@ -0,0 +1,16 @@
+import torch
+
+BATCH_SIZE = 4
+RESIZE_TO = 416
+NUM_EPOCHS = 10
+NUM_WORKERS = 4
+
+DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
+
+TRAIN_DIR = 'data/train'
+
+CLASSES = ['__backgroud__', '1']
+
+NUM_CLASSES = len(CLASSES)
+
+OUTDIR = 'model_outputs'
\ No newline at end of file
diff --git a/data/generate_dataset.py b/data/generate_dataset.py
index 68ff367..7631203 100644
--- a/data/generate_dataset.py
+++ b/data/generate_dataset.py
@@ -10,7 +10,6 @@ from pathlib import Path
 from tqdm.auto import tqdm
 
 import itertools
-
 import sys
 import os
 
@@ -63,7 +62,7 @@ def main(folder):
         s_trans = transformed(log_s.unsqueeze(0))
 
         fig_title = (f'{Path(folder).name}__{t0:.0f}s-{t1:.0f}s__{f0:.0f}-{f1:.0f}Hz').replace(' ', '0')
-        fig = plt.figure(figsize=(10, 7), num=fig_title)
+        fig = plt.figure(figsize=(7, 7), num=fig_title)
         gs = gridspec.GridSpec(1, 2, width_ratios=(8, 1), wspace=0)# , bottom=0, left=0, right=1, top=1
         gs2 = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1)#
         ax = fig.add_subplot(gs2[0, 0])
@@ -74,7 +73,7 @@ def main(folder):
         # fig.colorbar(im, cax=cax)
         ax.axis(False)
 
-        plt.savefig(fig_title + '.png', dpi=300)
+        plt.savefig(fig_title + '.png', dpi=256)
         plt.close()
     # # ax.imshow(spec[f0:f1, t0:t1], cmap='gray')
 
diff --git a/model.py b/model.py
new file mode 100644
index 0000000..9804b6e
--- /dev/null
+++ b/model.py
@@ -0,0 +1,28 @@
+import torch.nn
+import torchvision
+from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
+
+def create_model(num_classes: int) -> torch.nn.Module:
+    """
+    Create a pretrained Faster RCNN Model and replaces the final predictor in order to fit
+    to a specific detection task.
+
+    Parameters
+    ----------
+    num_classes: int
+        Number of classes (+1) that shall be detected with the model.
+        One more class is required because of background.
+
+    Returns
+    -------
+    model: torch.nn.Module
+        Adapted FasterRCNN Model
+    """
+    model = torchvision.models.detection.fasterrcnn_resnet50_fpn(
+        weights=torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
+
+    in_features = model.roi_heads.box_predictor.cls_score.in_features
+
+    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
+
+    return model
\ No newline at end of file