elimination of double detection works
This commit is contained in:
parent
f70e74f5e1
commit
866fd3081d
@ -37,7 +37,7 @@ def bbox_to_data(img_path, t_min, t_max, f_min, f_max):
|
||||
boxes[:, 1] = boxes[:, 1] * (f_max - f_min) + f_min
|
||||
boxes[:, 3] = boxes[:, 3] * (f_max - f_min) + f_min
|
||||
|
||||
scores = annotations[:, -1]
|
||||
scores = annotations[:, 5]
|
||||
|
||||
return boxes, scores
|
||||
|
||||
@ -146,21 +146,49 @@ def main(args):
|
||||
bbox_overlapping_mask, overlap_bbox_idxs = find_overlapping_bboxes(df_collect)
|
||||
|
||||
bbox_groups = delete_double_boxes(bbox_overlapping_mask, overlap_bbox_idxs, df_collect)
|
||||
# embed()
|
||||
# quit()
|
||||
print('got here')
|
||||
|
||||
time_frequency_bboxes = pd.DataFrame(data= np.array(df_collect), columns=['file_name', 't0', 'f0', 't1', 'f1', 'score'])
|
||||
|
||||
###########################################
|
||||
colors = np.random.rand(np.max(bbox_groups).astype(int), 3)
|
||||
for file_name in time_frequency_bboxes['file_name'].unique():
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
mask = time_frequency_bboxes['file_name'] == file_name
|
||||
for index, bbox in time_frequency_bboxes[mask].iterrows():
|
||||
name, t0, f0, t1, f1 = (bbox[0], *bbox[1:-1].astype(float))
|
||||
if bbox_groups[index] == 0:
|
||||
color = 'tab:green'
|
||||
elif bbox_groups[index] > 0:
|
||||
color = 'tab:red'
|
||||
else:
|
||||
color = 'k'
|
||||
|
||||
ax.add_patch(
|
||||
Rectangle((t0, f0),
|
||||
(t1 - t0),
|
||||
(f1 - f0),
|
||||
fill=False, color=color, linestyle='--', linewidth=2, zorder=10)
|
||||
)
|
||||
# ax.set_xlim(float(time_frequency_bboxes[mask]['t0'].min()), float(time_frequency_bboxes[mask]['t1'].max()))
|
||||
ax.set_xlim(0, float(time_frequency_bboxes[mask]['t1'].max()))
|
||||
# ax.set_ylim(float(time_frequency_bboxes[mask]['f0'].min()), float(time_frequency_bboxes[mask]['f1'].max()))
|
||||
ax.set_ylim(400, 1200)
|
||||
plt.show()
|
||||
exit()
|
||||
###########################################
|
||||
|
||||
if args.tracking_data_path:
|
||||
file_paths = sorted(list(pathlib.Path(args.tracking_data_path).absolute().rglob('*.raw')))
|
||||
for raw_path in file_paths:
|
||||
if not raw_path.parent.name in time_frequency_bboxes['file_name'].to_list():
|
||||
continue
|
||||
|
||||
assign_rises_to_ids(raw_path, time_frequency_bboxes, bbox_overlapping_mask, bbox_groups)
|
||||
|
||||
pass
|
||||
|
||||
def delete_double_boxes(bbox_overlapping_mask, overlap_bbox_idxs, df_collect):
|
||||
def delete_double_boxes(bbox_overlapping_mask, overlap_bbox_idxs, df_collect, overlap_th = 0.2):
|
||||
def get_connected(non_regarded_bbox_idx, overlap_bbox_idxs):
|
||||
mask = np.array((np.array(overlap_bbox_idxs) == non_regarded_bbox_idx).sum(1), dtype=bool)
|
||||
affected_bbox_idxs = np.unique(overlap_bbox_idxs[mask])
|
||||
@ -168,13 +196,11 @@ def delete_double_boxes(bbox_overlapping_mask, overlap_bbox_idxs, df_collect):
|
||||
|
||||
handled_bbox_idxs = []
|
||||
bbox_groups = np.zeros(len(df_collect))
|
||||
detele_bbox_idxs = []
|
||||
|
||||
for Coverlapping_bbox_idx in tqdm(np.unique(overlap_bbox_idxs)):
|
||||
if Coverlapping_bbox_idx in handled_bbox_idxs:
|
||||
continue
|
||||
# if bbox_overlapping_mask[Coverlapping_bbox_idx] >= 3:
|
||||
# pass
|
||||
# else:
|
||||
# continue
|
||||
|
||||
regarded_bbox_idxs = [Coverlapping_bbox_idx]
|
||||
mask = np.array((np.array(overlap_bbox_idxs) == Coverlapping_bbox_idx).sum(1), dtype=bool)
|
||||
@ -191,43 +217,96 @@ def delete_double_boxes(bbox_overlapping_mask, overlap_bbox_idxs, df_collect):
|
||||
regarded_bbox_idxs.append(non_regarded_bbox_idx)
|
||||
non_regarded_bbox_idxs = list(set(affected_bbox_idxs) - set(regarded_bbox_idxs))
|
||||
|
||||
bbox_idx_group = regarded_bbox_idxs
|
||||
bbox_idx_group = np.array(regarded_bbox_idxs)
|
||||
bbox_scores = df_collect[bbox_idx_group][:, -1].astype(float)
|
||||
# bbox_idx_group = bbox_idx_group[bbox_scores.argsort()]
|
||||
# bbox_scores = bbox_scores[bbox_scores.argsort()]
|
||||
|
||||
bbox_groups[bbox_idx_group] = np.max(bbox_groups) + 1
|
||||
# bbox_scores = df_collect[bbox_idx_group][:, -1]
|
||||
# overlap_pct = np.full((len(bbox_idx_group), len(bbox_idx_group)), np.nan)
|
||||
#
|
||||
# for i, j in itertools.product(range(len(bbox_idx_group)), repeat=2):
|
||||
# if i == j:
|
||||
# continue
|
||||
# bb0_idx = bbox_idx_group[i]
|
||||
# bb1_idx = bbox_idx_group[j]
|
||||
#
|
||||
# bb0_t0, bb0_t1 = df_collect[bb0_idx][1].astype(float), df_collect[bb0_idx][3].astype(float)
|
||||
# bb1_t0, bb1_t1 = df_collect[bb1_idx][1].astype(float), df_collect[bb1_idx][3].astype(float)
|
||||
#
|
||||
# helper = np.array([0, 0, 1, 1])
|
||||
# bb_times = np.array([bb0_t0, bb0_t1, bb1_t0, bb1_t1])
|
||||
#
|
||||
# sorted_helper = helper[bb_times.argsort()]
|
||||
#
|
||||
# if sorted_helper[0] == sorted_helper[1]:
|
||||
# continue
|
||||
#
|
||||
# elif sorted_helper[1] == sorted_helper[2] == 0:
|
||||
# overlap_pct[i, j] = 1
|
||||
#
|
||||
# elif sorted_helper[1] == sorted_helper[2] == 1:
|
||||
# overlap_pct[i, j] = (bb1_t1 - bb1_t0) / (bb0_t1 - bb0_t0)
|
||||
#
|
||||
# else:
|
||||
# overlap_pct[i, j] = np.diff(sorted(bb_times)[1:3])[0] / ((bb0_t1 - bb0_t0))
|
||||
# embed()
|
||||
# quit()
|
||||
|
||||
remove_idx_combinations = [()]
|
||||
remove_idx_combinations_scores = [0]
|
||||
for r in range(1, len(bbox_idx_group)):
|
||||
remove_idx_combinations.extend(list(itertools.combinations(bbox_idx_group, r=r)))
|
||||
remove_idx_combinations_scores.extend(list(itertools.combinations(bbox_scores, r=r)))
|
||||
for enu, combi_score in enumerate(remove_idx_combinations_scores):
|
||||
remove_idx_combinations_scores[enu] = np.sum(combi_score)
|
||||
if len(bbox_idx_group) > 2:
|
||||
print(remove_idx_combinations)
|
||||
print(remove_idx_combinations_scores)
|
||||
print('')
|
||||
|
||||
remove_idx_combinations = [remove_idx_combinations[ind] for ind in np.argsort(remove_idx_combinations_scores)]
|
||||
remove_idx_combinations_scores = [remove_idx_combinations_scores[ind] for ind in np.argsort(remove_idx_combinations_scores)]
|
||||
|
||||
print(remove_idx_combinations)
|
||||
print(remove_idx_combinations_scores)
|
||||
print('')
|
||||
|
||||
# time_overlap_pct, freq_overlap_pct = compute_time_frequency_overlap_for_bbox_group(bbox_idx_group, df_collect)
|
||||
|
||||
for remove_idx in remove_idx_combinations:
|
||||
select_bbox_idx_group = list(set(bbox_idx_group) - set(remove_idx))
|
||||
time_overlap_pct, freq_overlap_pct = (
|
||||
compute_time_frequency_overlap_for_bbox_group(select_bbox_idx_group,df_collect))
|
||||
|
||||
if np.all(np.min([time_overlap_pct, freq_overlap_pct], axis=0) < overlap_th):
|
||||
break
|
||||
#embed()
|
||||
#quit()
|
||||
if len(remove_idx) > 0:
|
||||
bbox_groups[np.array(remove_idx)] *= -1
|
||||
|
||||
handled_bbox_idxs.extend(bbox_idx_group)
|
||||
|
||||
return bbox_groups
|
||||
|
||||
def compute_time_frequency_overlap_for_bbox_group(bbox_idx_group, df_collect):
|
||||
time_overlap_pct = np.zeros((len(bbox_idx_group), len(bbox_idx_group)))
|
||||
freq_overlap_pct = np.zeros((len(bbox_idx_group), len(bbox_idx_group)))
|
||||
|
||||
|
||||
for i, j in itertools.product(range(len(bbox_idx_group)), repeat=2):
|
||||
if i == j:
|
||||
continue
|
||||
bb0_idx = bbox_idx_group[i]
|
||||
bb1_idx = bbox_idx_group[j]
|
||||
|
||||
bb0_t0, bb0_t1 = df_collect[bb0_idx][1].astype(float), df_collect[bb0_idx][3].astype(float)
|
||||
bb1_t0, bb1_t1 = df_collect[bb1_idx][1].astype(float), df_collect[bb1_idx][3].astype(float)
|
||||
|
||||
bb0_f0, bb0_f1 = df_collect[bb0_idx][2].astype(float), df_collect[bb0_idx][4].astype(float)
|
||||
bb1_f0, bb1_f1 = df_collect[bb1_idx][2].astype(float), df_collect[bb1_idx][4].astype(float)
|
||||
|
||||
bb_times_idx = np.array([0, 0, 1, 1])
|
||||
bb_times = np.array([bb0_t0, bb0_t1, bb1_t0, bb1_t1])
|
||||
sorted_bb_times_idx = bb_times_idx[bb_times.argsort()]
|
||||
|
||||
if sorted_bb_times_idx[0] == sorted_bb_times_idx[1]:
|
||||
time_overlap_pct[i, j] = 0
|
||||
elif sorted_bb_times_idx[1] == sorted_bb_times_idx[2] == 0:
|
||||
time_overlap_pct[i, j] = 1
|
||||
elif sorted_bb_times_idx[1] == sorted_bb_times_idx[2] == 1:
|
||||
time_overlap_pct[i, j] = (bb1_t1 - bb1_t0) / (bb0_t1 - bb0_t0)
|
||||
else:
|
||||
time_overlap_pct[i, j] = np.diff(sorted(bb_times)[1:3])[0] / ((bb0_t1 - bb0_t0))
|
||||
|
||||
bb_freqs_idx = np.array([0, 0, 1, 1])
|
||||
bb_freqs = np.array([bb0_f0, bb0_f1, bb1_f0, bb1_f1])
|
||||
sorted_bb_freqs_idx = bb_freqs_idx[bb_freqs.argsort()]
|
||||
|
||||
if sorted_bb_freqs_idx[0] == sorted_bb_freqs_idx[1]:
|
||||
freq_overlap_pct[i, j] = 0
|
||||
elif sorted_bb_freqs_idx[1] == sorted_bb_freqs_idx[2] == 0:
|
||||
freq_overlap_pct[i, j] = 1
|
||||
elif sorted_bb_freqs_idx[1] == sorted_bb_freqs_idx[2] == 1:
|
||||
freq_overlap_pct[i, j] = (bb1_f1 - bb1_f0) / (bb0_f1 - bb0_f0)
|
||||
else:
|
||||
freq_overlap_pct[i, j] = np.diff(sorted(bb_freqs)[1:3])[0] / ((bb0_f1 - bb0_f0))
|
||||
|
||||
return time_overlap_pct, freq_overlap_pct
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Extract time, frequency and identity association of bboxes')
|
||||
parser.add_argument('annotations', nargs='?', type=str, help='path to annotations')
|
||||
|
Loading…
Reference in New Issue
Block a user