fixed image name problematic
This commit is contained in:
parent
0adfc22ec4
commit
7f2d1cfb33
13
inference.py
13
inference.py
@ -14,8 +14,8 @@ from tqdm.auto import tqdm
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Rectangle
|
||||
|
||||
def plot_inference(img_tensor, output, target, detection_threshold):
|
||||
fig, ax = plt.subplots(figsize=(7, 7), num=target['image_id'])
|
||||
def plot_inference(img_tensor, img_name, output, target, detection_threshold):
|
||||
fig, ax = plt.subplots(figsize=(7, 7), num=img_name)
|
||||
ax.imshow(img_tensor.cpu().squeeze().permute(1, 2, 0), aspect='auto')
|
||||
for (x0, y0, x1, y1), l, score in zip(output['boxes'].cpu(), output['labels'].cpu(), output['scores'].cpu()):
|
||||
if score < detection_threshold:
|
||||
@ -46,15 +46,14 @@ def infere_model(test_loader, model, detection_th=0.8):
|
||||
for samples, targets in prog_bar:
|
||||
images = list(image.to(DEVICE) for image in samples)
|
||||
|
||||
embed()
|
||||
quit()
|
||||
targets = [{k: v for k, v in t.items()} for t in targets]
|
||||
img_names = [t['image_name'] for t in targets]
|
||||
targets = [{k: v for k, v in t.items() if k != 'image_name'} for t in targets]
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = model(images)
|
||||
|
||||
for image, output, target in zip(images, outputs, targets):
|
||||
plot_inference(image, output, target, detection_th)
|
||||
for image, img_name, output, target in zip(images, img_names, outputs, targets):
|
||||
plot_inference(image, img_name, output, target, detection_th)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
7
train.py
7
train.py
@ -19,7 +19,8 @@ def train(train_loader, model, optimizer, train_loss):
|
||||
for samples, targets in prog_bar:
|
||||
images = list(image.to(DEVICE) for image in samples)
|
||||
|
||||
targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
|
||||
# targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
|
||||
targets = [{k: v.to(DEVICE) for k, v in t.items() if k != 'image_name'} for t in targets]
|
||||
|
||||
loss_dict = model(images, targets)
|
||||
|
||||
@ -43,7 +44,9 @@ def validate(test_loader, model, val_loss):
|
||||
for samples, targets in prog_bar:
|
||||
images = list(image.to(DEVICE) for image in samples)
|
||||
|
||||
targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
|
||||
# targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
|
||||
targets = [{k: v.to(DEVICE) for k, v in t.items() if k != 'image_name'} for t in targets]
|
||||
|
||||
|
||||
with torch.inference_mode():
|
||||
loss_dict = model(images, targets)
|
||||
|
Loading…
Reference in New Issue
Block a user