fixed the validation output. generation of folder was missing

This commit is contained in:
Till Raab 2023-11-06 10:57:04 +01:00
parent 4e1784a399
commit 61d5a7246b
2 changed files with 6 additions and 0 deletions

View File

@ -31,6 +31,7 @@ training and one for testing (both also stored in ./data/dataset).
* on a long scale: only save raw file bounding boxes in frequency and time (t0, t1, f0, f1) and the hyperparameters of the corresponding spectrogram. USE THESE PARAMETERS IN DATASET_FN.
* rescale image input to (7, 7) * 256 --> width/height in inch * dpi
* when dataset input it spectrogram use resize transform.
* replace datastructure with yolo structure ... per pic 1 .csv saved as .txt
## model.py

View File

@ -12,7 +12,9 @@ import matplotlib.gridspec as gridspec
from matplotlib.patches import Rectangle
import time
import pathlib
from pathlib import Path
from IPython import embed
def train(train_loader, model, optimizer, train_loss):
@ -64,6 +66,8 @@ def best_model_validation_with_plots(test_loader):
model.load_state_dict(checkpoint["model_state_dict"])
model.to(DEVICE).eval()
if not pathlib.Path(Path(INFERENCE_OUTDIR)/Path(DATA_DIR).name).exists():
pathlib.Path(Path(INFERENCE_OUTDIR)/Path(DATA_DIR).name).mkdir(parents=True, exist_ok=True)
validate_with_plots(test_loader, model)
@ -111,6 +115,7 @@ def plot_validation(img_tensor, img_name, output, target, detection_threshold):
)
ax.set_axis_off()
plt.savefig(Path(INFERENCE_OUTDIR)/Path(DATA_DIR).name/(os.path.splitext(img_name)[0] +'_predicted.png'), dpi=IMG_DPI)
plt.close()
# plt.show()