README with ToDos implemented
This commit is contained in:
parent
4bbf3607e9
commit
5c2fc32cea
@ -50,7 +50,6 @@ im2 = ImageOps.grayscale(im1)
|
|||||||
* check other pretrained models from torchvision.models.detection, e.g. fasterrcnn_resnet50_fpn_v2
|
* check other pretrained models from torchvision.models.detection, e.g. fasterrcnn_resnet50_fpn_v2
|
||||||
|
|
||||||
## config.py
|
## config.py
|
||||||
|
|
||||||
Containes Hyperparameters used by the scripts.
|
Containes Hyperparameters used by the scripts.
|
||||||
|
|
||||||
## ToDos:
|
## ToDos:
|
||||||
@ -60,6 +59,8 @@ Containes Hyperparameters used by the scripts.
|
|||||||
Classes and functions to save models and store loss values for later illustration.
|
Classes and functions to save models and store loss values for later illustration.
|
||||||
Also includes helper functions...
|
Also includes helper functions...
|
||||||
|
|
||||||
|
## ToDos:
|
||||||
|
|
||||||
### train.py
|
### train.py
|
||||||
Code training the model using the stored images in ./data/dataset and the .csv files
|
Code training the model using the stored images in ./data/dataset and the .csv files
|
||||||
containing the bounding boxes meant for training. For each epoch test-loss (without
|
containing the bounding boxes meant for training. For each epoch test-loss (without
|
||||||
@ -68,9 +69,13 @@ of the previous epochs. If the new model is the best model, the model.state_dict
|
|||||||
./model_outputs as best_model.pth.
|
./model_outputs as best_model.pth.
|
||||||
|
|
||||||
## ToDos:
|
## ToDos:
|
||||||
*
|
|
||||||
|
|
||||||
### inference.py
|
### inference.py
|
||||||
|
Currently, this code performs predictions based in the test dataset (img and corresponding csv file).
|
||||||
|
However, this code shall be used to infer totally unknown images. Prediction results are ilustrated
|
||||||
|
and stored in ./inference_output
|
||||||
|
|
||||||
|
## ToDo:
|
||||||
|
* implement path where no csv file is needed...
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user