plot traces and rises in spec

This commit is contained in:
Till Raab 2023-10-20 11:23:02 +02:00
parent db0f6a4f7b
commit 580dcda2a5

View File

@ -40,9 +40,11 @@ def load_data(folder):
idx_v = np.load(base_path / 'idx_v.npy')
times_v = np.load(base_path / 'times.npy')
fish_freq = np.load(base_path / 'analysis' / 'fish_freq.npy')
rise_idx = np.load(base_path / 'analysis' / 'rise_idx.npy')
return fill_freqs, fill_times, fill_spec, EODf_v, ident_v, idx_v, times_v, rise_idx
return fill_freqs, fill_times, fill_spec, EODf_v, ident_v, idx_v, times_v, fish_freq, rise_idx
def save_spec_pic(folder, s_trans, times, freq, t_idx0, t_idx1, f_idx0, f_idx1, t_res, f_res):
fig_title = (f'{Path(folder).name}__{t0:.0f}s-{t1:.0f}s__{f0:4.0f}-{f1:4.0f}Hz').replace(' ', '0')
@ -59,8 +61,6 @@ def save_spec_pic(folder, s_trans, times, freq, t_idx0, t_idx1, f_idx0, f_idx1,
def main(args):
min_freq = 200
max_freq = 1500
d_freq = 200
@ -68,7 +68,7 @@ def main(args):
d_time = 60*15
time_overlap = 60*5
freq, times, spec, EODf_v, ident_v, idx_v, times_v, rise_idx = load_data(args.folder)
freq, times, spec, EODf_v, ident_v, idx_v, times_v, fish_freq, rise_idx = load_data(args.folder)
f_res, t_res = freq[1] - freq[0], times[1] - times[0]
unique_ids = np.unique(ident_v[~np.isnan(ident_v)])
@ -102,20 +102,26 @@ def main(args):
if not args.dev:
save_spec_pic(args.folder, s_trans, times, freq, t_idx0, t_idx1, f_idx0, f_idx1, t_res, f_res)
exit()
else:
fig_title = (f'{Path(args.folder).name}__{t0:.0f}s-{t1:.0f}s__{f0:4.0f}-{f1:4.0f}Hz').replace(' ', '0')
fig = plt.figure(figsize=(7, 7), num=fig_title)
gs = gridspec.GridSpec(1, 2, width_ratios=(8, 1), wspace=0) # , bottom=0, left=0, right=1, top=1
fig = plt.figure(figsize=(10, 7), num=fig_title)
gs = gridspec.GridSpec(1, 2, width_ratios=(8, 1), wspace=0, left=0.1, bottom=0.1, right=0.9, top=0.95) # , bottom=0, left=0, right=1, top=1
ax = fig.add_subplot(gs[0, 0])
cax = fig.add_subplot(gs[0, 1])
im = ax.imshow(s_trans.squeeze(), cmap='gray', aspect='auto', origin='lower',
extent=(times[t_idx0] / 3600, times[t_idx1] / 3600 + t_res, freq[f_idx0], freq[f_idx1] + f_res))
extent=(times[t_idx0], times[t_idx1] + t_res, freq[f_idx0], freq[f_idx1] + f_res))
fig.colorbar(im, cax=cax, orientation='vertical')
times_v_idx0, times_v_idx1 = np.argmin(np.abs(times_v - t0)), np.argmin(np.abs(times_v - t1))
for id_idx in range(len(fish_freq)):
ax.plot(times_v[times_v_idx0:times_v_idx1], fish_freq[id_idx][times_v_idx0:times_v_idx1], marker='.', color='k')
rise_idx_oi = rise_idx[id_idx][(rise_idx[id_idx] >= times_v_idx0) & (rise_idx[id_idx] <= times_v_idx1)]
ax.plot(times_v[rise_idx_oi], fish_freq[id_idx][rise_idx_oi], marker='o', color='tab:red')
plt.show()
# # ax.imshow(spec[f0:f1, t0:t1], cmap='gray')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluated electrode array recordings with multiple fish.')