getting back. start to implement greyscale images as inputs
This commit is contained in:
parent
e23301c0d1
commit
4e1784a399
@ -29,6 +29,8 @@ training and one for testing (both also stored in ./data/dataset).
|
|||||||
|
|
||||||
### ToDos:
|
### ToDos:
|
||||||
* on a long scale: only save raw file bounding boxes in frequency and time (t0, t1, f0, f1) and the hyperparameters of the corresponding spectrogram. USE THESE PARAMETERS IN DATASET_FN.
|
* on a long scale: only save raw file bounding boxes in frequency and time (t0, t1, f0, f1) and the hyperparameters of the corresponding spectrogram. USE THESE PARAMETERS IN DATASET_FN.
|
||||||
|
* rescale image input to (7, 7) * 256 --> width/height in inch * dpi
|
||||||
|
* when dataset input it spectrogram use resize transform.
|
||||||
|
|
||||||
## model.py
|
## model.py
|
||||||
|
|
||||||
|
20
confic.py
20
confic.py
@ -1,24 +1,34 @@
|
|||||||
import torch
|
import torch
|
||||||
import pathlib
|
import pathlib
|
||||||
|
|
||||||
|
# training parameters
|
||||||
BATCH_SIZE = 8
|
BATCH_SIZE = 8
|
||||||
RESIZE_TO = 416
|
|
||||||
NUM_EPOCHS = 10
|
NUM_EPOCHS = 10
|
||||||
NUM_WORKERS = 4
|
NUM_WORKERS = 4
|
||||||
|
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||||
|
|
||||||
|
# input parameters
|
||||||
IMG_SIZE = (7, 7) # inches
|
IMG_SIZE = (7, 7) # inches
|
||||||
IMG_DPI = 256
|
IMG_DPI = 256
|
||||||
|
RESIZE_TO = 416 # ToDo: alter this parameter to (7, 7) * 256 [IMG_SIZE * IMG_DPI]
|
||||||
|
|
||||||
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
# dataset parameters
|
||||||
|
|
||||||
CLASSES = ['__backgroud__', '1']
|
CLASSES = ['__backgroud__', '1']
|
||||||
|
|
||||||
NUM_CLASSES = len(CLASSES)
|
NUM_CLASSES = len(CLASSES)
|
||||||
|
|
||||||
|
# data snippet paramters
|
||||||
|
MIN_FREQ = 200
|
||||||
|
MAX_FREQ = 1500
|
||||||
|
DELTA_FREQ = 200
|
||||||
|
FREQ_OVERLAP = 25
|
||||||
|
|
||||||
|
DELTA_TIME = 60*10
|
||||||
|
TIME_OVERLAP = 60*1
|
||||||
|
|
||||||
|
# output parameters
|
||||||
DATA_DIR = 'data/dataset'
|
DATA_DIR = 'data/dataset'
|
||||||
OUTDIR = 'model_outputs'
|
OUTDIR = 'model_outputs'
|
||||||
INFERENCE_OUTDIR = 'inference_outputs'
|
INFERENCE_OUTDIR = 'inference_outputs'
|
||||||
|
|
||||||
for required_folders in [DATA_DIR, OUTDIR, INFERENCE_OUTDIR]:
|
for required_folders in [DATA_DIR, OUTDIR, INFERENCE_OUTDIR]:
|
||||||
if not pathlib.Path(required_folders).exists():
|
if not pathlib.Path(required_folders).exists():
|
||||||
pathlib.Path(required_folders).mkdir(parents=True, exist_ok=True)
|
pathlib.Path(required_folders).mkdir(parents=True, exist_ok=True)
|
||||||
|
Loading…
Reference in New Issue
Block a user