diff --git a/data/generate_dataset.py b/data/generate_dataset.py index 1ee8e9f..7186688 100644 --- a/data/generate_dataset.py +++ b/data/generate_dataset.py @@ -1,4 +1,5 @@ import numpy as np +import argparse import torch from torch import nn import torch.nn.functional as F @@ -40,14 +41,26 @@ def load_data(folder): times_v = np.load(base_path / 'times.npy') rise_idx = np.load(base_path / 'analysis' / 'rise_idx.npy') - ff = np.load(base_path / 'analysis' / 'fish_freq.npy') - embed() - quit() return fill_freqs, fill_times, fill_spec, EODf_v, ident_v, idx_v, times_v, rise_idx +def save_spec_pic(folder, s_trans, times, freq, t_idx0, t_idx1, f_idx0, f_idx1, t_res, f_res): + fig_title = (f'{Path(folder).name}__{t0:.0f}s-{t1:.0f}s__{f0:4.0f}-{f1:4.0f}Hz').replace(' ', '0') + fig = plt.figure(figsize=(7, 7), num=fig_title) + gs = gridspec.GridSpec(1, 2, width_ratios=(8, 1), wspace=0) # , bottom=0, left=0, right=1, top=1 + gs2 = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1) # + ax = fig.add_subplot(gs2[0, 0]) + im = ax.imshow(s_trans.squeeze(), cmap='gray', aspect='auto', origin='lower', + extent=(times[t_idx0] / 3600, times[t_idx1] / 3600 + t_res, freq[f_idx0], freq[f_idx1] + f_res)) + ax.axis(False) + + plt.savefig(os.path.join('train', fig_title + '.png'), dpi=256) + plt.close() + + +def main(args): + -def main(folder): min_freq = 200 max_freq = 1500 d_freq = 200 @@ -55,7 +68,7 @@ def main(folder): d_time = 60*15 time_overlap = 60*5 - freq, times, spec, EODf_v, ident_v, idx_v, times_v, rise_idx = load_data(folder) + freq, times, spec, EODf_v, ident_v, idx_v, times_v, rise_idx = load_data(args.folder) f_res, t_res = freq[1] - freq[0], times[1] - times[0] unique_ids = np.unique(ident_v[~np.isnan(ident_v)]) @@ -82,30 +95,33 @@ def main(folder): f_idx0, f_idx1 = np.argmin(np.abs(freq - f0)), np.argmin(np.abs(freq - f1)) t_idx0, t_idx1 = np.argmin(np.abs(times - t0)), np.argmin(np.abs(times - t1)) - embed() - quit() - s = torch.from_numpy(spec[f_idx0:f_idx1, t_idx0:t_idx1].copy()).type(torch.float32) log_s = torch.log10(s) transformed = T.Normalize(mean=torch.mean(log_s), std=torch.std(log_s)) s_trans = transformed(log_s.unsqueeze(0)) + if not args.dev: + save_spec_pic(args.folder, s_trans, times, freq, t_idx0, t_idx1, f_idx0, f_idx1, t_res, f_res) + exit() + else: + fig_title = (f'{Path(folder).name}__{t0:.0f}s-{t1:.0f}s__{f0:4.0f}-{f1:4.0f}Hz').replace(' ', '0') + fig = plt.figure(figsize=(7, 7), num=fig_title) + gs = gridspec.GridSpec(1, 2, width_ratios=(8, 1), wspace=0) # , bottom=0, left=0, right=1, top=1 + ax = fig.add_subplot(gs[0, 0]) + cax = fig.add_subplot(gs[0, 1]) + im = ax.imshow(s_trans.squeeze(), cmap='gray', aspect='auto', origin='lower', + extent=(times[t_idx0] / 3600, times[t_idx1] / 3600 + t_res, freq[f_idx0], freq[f_idx1] + f_res)) + + fig.colorbar(im, cax=cax, orientation='vertical') + plt.show() - fig_title = (f'{Path(folder).name}__{t0:.0f}s-{t1:.0f}s__{f0:4.0f}-{f1:4.0f}Hz').replace(' ', '0') - fig = plt.figure(figsize=(7, 7), num=fig_title) - gs = gridspec.GridSpec(1, 2, width_ratios=(8, 1), wspace=0)# , bottom=0, left=0, right=1, top=1 - gs2 = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1)# - ax = fig.add_subplot(gs2[0, 0]) - im = ax.imshow(s_trans.squeeze(), cmap='gray', aspect='auto', origin='lower', extent=(times[t_idx0]/3600, times[t_idx1]/3600 + t_res, freq[f_idx0], freq[f_idx1] + f_res)) - ax.axis(False) - - plt.savefig(os.path.join('train', fig_title + '.png'), dpi=256) - plt.close() # # ax.imshow(spec[f0:f1, t0:t1], cmap='gray') - - - - if __name__ == '__main__': - main(sys.argv[1]) \ No newline at end of file + parser = argparse.ArgumentParser(description='Evaluated electrode array recordings with multiple fish.') + parser.add_argument('file', type=str, help='single recording analysis', default='') + parser.add_argument('-d', "--dev", action="store_true", help="developer mode; no data saved") + # parser.add_argument('-x', type=int, nargs=2, default=[1272, 1282], help='x-borders of LED detect area (in pixels)') + # parser.add_argument('-y', type=int, nargs=2, default=[1500, 1516], help='y-borders of LED area (in pixels)') + args = parser.parse_args() + main(args) \ No newline at end of file