looks better ... write inference code and feed the model

This commit is contained in:
Till Raab 2023-10-24 09:17:31 +02:00
parent 85e675fb48
commit 48d84d3793
2 changed files with 34 additions and 26 deletions

View File

@ -41,7 +41,7 @@ class SaveBestModel:
if current_valid_loss < self.best_valid_loss:
self.best_valid_loss = current_valid_loss
print(f"\nBest validation loss: {self.best_valid_loss}")
print(f"\nSaving best model for epoch: {epoch + 1}\n")
print(f"Saving best model for epoch: {epoch + 1}")
torch.save({
'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
@ -78,7 +78,6 @@ def save_loss_plot(OUT_DIR, train_loss, val_loss):
valid_ax.set_ylabel('validation loss')
figure_1.savefig(f"{OUT_DIR}/train_loss.png")
figure_2.savefig(f"{OUT_DIR}/valid_loss.png")
print('SAVING PLOTS COMPLETE...')
plt.close('all')

View File

@ -12,9 +12,8 @@ import time
from IPython import embed
def train(train_loader, model, optimizer):
def train(train_loader, model, optimizer, train_loss):
print('Training')
global train_loss_list
prog_bar = tqdm(train_loader, total=len(train_loader))
for samples, targets in prog_bar:
@ -27,7 +26,7 @@ def train(train_loader, model, optimizer):
losses = sum(loss for loss in loss_dict.values())
loss_value = losses.item()
train_loss_hist.send(loss_value) # this is a global instance !!!
train_loss_list.append(loss_value) # check what exactly this does !!!
train_loss.append(loss_value)
optimizer.zero_grad()
losses.backward()
@ -35,8 +34,32 @@ def train(train_loader, model, optimizer):
prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")
return train_loss_list
return train_loss
def validate(test_loader, model, val_loss):
print('Validation')
prog_bar = tqdm(test_loader, total=len(test_loader))
for samples, targets in prog_bar:
images = list(image.to(DEVICE) for image in samples)
targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
with torch.inference_mode():
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
loss_value = losses.item()
val_loss_hist.send(loss_value) # this is a global instance !!!
val_loss.append(loss_value)
# optimizer.zero_grad()
# losses.backward()
# optimizer.step()
prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")
return val_loss
if __name__ == '__main__':
train_data, test_data = create_train_test_dataset(TRAIN_DIR)
@ -53,18 +76,20 @@ if __name__ == '__main__':
val_loss_hist = Averager()
# train_itr = 1
# val_itr = 1
train_loss_list = []
val_loss_list = []
train_loss = []
val_loss = []
save_best_model = SaveBestModel()
for epoch in range(NUM_EPOCHS):
print(f'\n--- Epoch {epoch+1}/{NUM_EPOCHS} ---')
train_loss_hist.reset()
val_loss_hist.reset()
train_loss = train(train_loader, model, optimizer)
# val_loss = validate(train_loader, model, optimizer)
train_loss = train(train_loader, model, optimizer, train_loss)
val_loss = validate(test_loader, model, val_loss)
save_best_model(
val_loss_hist.value, epoch, model, optimizer
@ -74,19 +99,3 @@ if __name__ == '__main__':
save_loss_plot(OUTDIR, train_loss, val_loss)
# prog_bar = tqdm(train_loader, total=len(train_loader))
# for samples, targets in prog_bar:
# images = list(image.to(DEVICE) for image in samples)
#
# targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
#
# loss_dict = model(images, targets)
#
# losses = sum(loss for loss in loss_dict.values())
# loss_value = losses.item()
#
# optimizer.zero_grad()
# losses.backward()
# optimizer.step()
#
# prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")