looks better ... write inference code and feed the model
This commit is contained in:
parent
85e675fb48
commit
48d84d3793
@ -41,7 +41,7 @@ class SaveBestModel:
|
|||||||
if current_valid_loss < self.best_valid_loss:
|
if current_valid_loss < self.best_valid_loss:
|
||||||
self.best_valid_loss = current_valid_loss
|
self.best_valid_loss = current_valid_loss
|
||||||
print(f"\nBest validation loss: {self.best_valid_loss}")
|
print(f"\nBest validation loss: {self.best_valid_loss}")
|
||||||
print(f"\nSaving best model for epoch: {epoch + 1}\n")
|
print(f"Saving best model for epoch: {epoch + 1}")
|
||||||
torch.save({
|
torch.save({
|
||||||
'epoch': epoch + 1,
|
'epoch': epoch + 1,
|
||||||
'model_state_dict': model.state_dict(),
|
'model_state_dict': model.state_dict(),
|
||||||
@ -78,7 +78,6 @@ def save_loss_plot(OUT_DIR, train_loss, val_loss):
|
|||||||
valid_ax.set_ylabel('validation loss')
|
valid_ax.set_ylabel('validation loss')
|
||||||
figure_1.savefig(f"{OUT_DIR}/train_loss.png")
|
figure_1.savefig(f"{OUT_DIR}/train_loss.png")
|
||||||
figure_2.savefig(f"{OUT_DIR}/valid_loss.png")
|
figure_2.savefig(f"{OUT_DIR}/valid_loss.png")
|
||||||
print('SAVING PLOTS COMPLETE...')
|
|
||||||
|
|
||||||
plt.close('all')
|
plt.close('all')
|
||||||
|
|
||||||
|
57
train.py
57
train.py
@ -12,9 +12,8 @@ import time
|
|||||||
|
|
||||||
from IPython import embed
|
from IPython import embed
|
||||||
|
|
||||||
def train(train_loader, model, optimizer):
|
def train(train_loader, model, optimizer, train_loss):
|
||||||
print('Training')
|
print('Training')
|
||||||
global train_loss_list
|
|
||||||
|
|
||||||
prog_bar = tqdm(train_loader, total=len(train_loader))
|
prog_bar = tqdm(train_loader, total=len(train_loader))
|
||||||
for samples, targets in prog_bar:
|
for samples, targets in prog_bar:
|
||||||
@ -27,7 +26,7 @@ def train(train_loader, model, optimizer):
|
|||||||
losses = sum(loss for loss in loss_dict.values())
|
losses = sum(loss for loss in loss_dict.values())
|
||||||
loss_value = losses.item()
|
loss_value = losses.item()
|
||||||
train_loss_hist.send(loss_value) # this is a global instance !!!
|
train_loss_hist.send(loss_value) # this is a global instance !!!
|
||||||
train_loss_list.append(loss_value) # check what exactly this does !!!
|
train_loss.append(loss_value)
|
||||||
|
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
losses.backward()
|
losses.backward()
|
||||||
@ -35,8 +34,32 @@ def train(train_loader, model, optimizer):
|
|||||||
|
|
||||||
prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")
|
prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")
|
||||||
|
|
||||||
return train_loss_list
|
return train_loss
|
||||||
|
|
||||||
|
def validate(test_loader, model, val_loss):
|
||||||
|
print('Validation')
|
||||||
|
|
||||||
|
prog_bar = tqdm(test_loader, total=len(test_loader))
|
||||||
|
for samples, targets in prog_bar:
|
||||||
|
images = list(image.to(DEVICE) for image in samples)
|
||||||
|
|
||||||
|
targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
loss_dict = model(images, targets)
|
||||||
|
|
||||||
|
losses = sum(loss for loss in loss_dict.values())
|
||||||
|
loss_value = losses.item()
|
||||||
|
val_loss_hist.send(loss_value) # this is a global instance !!!
|
||||||
|
val_loss.append(loss_value)
|
||||||
|
|
||||||
|
# optimizer.zero_grad()
|
||||||
|
# losses.backward()
|
||||||
|
# optimizer.step()
|
||||||
|
|
||||||
|
prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")
|
||||||
|
|
||||||
|
return val_loss
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
train_data, test_data = create_train_test_dataset(TRAIN_DIR)
|
train_data, test_data = create_train_test_dataset(TRAIN_DIR)
|
||||||
@ -53,18 +76,20 @@ if __name__ == '__main__':
|
|||||||
val_loss_hist = Averager()
|
val_loss_hist = Averager()
|
||||||
# train_itr = 1
|
# train_itr = 1
|
||||||
# val_itr = 1
|
# val_itr = 1
|
||||||
train_loss_list = []
|
train_loss = []
|
||||||
val_loss_list = []
|
val_loss = []
|
||||||
|
|
||||||
save_best_model = SaveBestModel()
|
save_best_model = SaveBestModel()
|
||||||
|
|
||||||
for epoch in range(NUM_EPOCHS):
|
for epoch in range(NUM_EPOCHS):
|
||||||
|
print(f'\n--- Epoch {epoch+1}/{NUM_EPOCHS} ---')
|
||||||
|
|
||||||
train_loss_hist.reset()
|
train_loss_hist.reset()
|
||||||
val_loss_hist.reset()
|
val_loss_hist.reset()
|
||||||
|
|
||||||
train_loss = train(train_loader, model, optimizer)
|
train_loss = train(train_loader, model, optimizer, train_loss)
|
||||||
# val_loss = validate(train_loader, model, optimizer)
|
val_loss = validate(test_loader, model, val_loss)
|
||||||
|
|
||||||
|
|
||||||
save_best_model(
|
save_best_model(
|
||||||
val_loss_hist.value, epoch, model, optimizer
|
val_loss_hist.value, epoch, model, optimizer
|
||||||
@ -74,19 +99,3 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
save_loss_plot(OUTDIR, train_loss, val_loss)
|
save_loss_plot(OUTDIR, train_loss, val_loss)
|
||||||
|
|
||||||
# prog_bar = tqdm(train_loader, total=len(train_loader))
|
|
||||||
# for samples, targets in prog_bar:
|
|
||||||
# images = list(image.to(DEVICE) for image in samples)
|
|
||||||
#
|
|
||||||
# targets = [{k: v.to(DEVICE) for k, v in t.items()} for t in targets]
|
|
||||||
#
|
|
||||||
# loss_dict = model(images, targets)
|
|
||||||
#
|
|
||||||
# losses = sum(loss for loss in loss_dict.values())
|
|
||||||
# loss_value = losses.item()
|
|
||||||
#
|
|
||||||
# optimizer.zero_grad()
|
|
||||||
# losses.backward()
|
|
||||||
# optimizer.step()
|
|
||||||
#
|
|
||||||
# prog_bar.set_description(desc=f"Loss: {loss_value:.4f}")
|
|
Loading…
Reference in New Issue
Block a user