small documentation progress
This commit is contained in:
parent
e2b540c329
commit
3dbc78685d
@ -1,28 +1,40 @@
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import itertools
|
||||
import sys
|
||||
import os
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision.transforms as T
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.gridspec as gridspec
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
|
||||
from pathlib import Path
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
import itertools
|
||||
import sys
|
||||
import os
|
||||
|
||||
from IPython import embed
|
||||
|
||||
from matplotlib.patches import Rectangle
|
||||
from matplotlib.collections import PatchCollection
|
||||
|
||||
def load_spec_data(folder):
|
||||
def load_spec_data(folder: str):
|
||||
"""
|
||||
Load spectrogram of a given electrode-grid recording generated with the wavetracker package. The spectrograms may
|
||||
be to large to load in total, thats why memmory mapping is used (numpy.memmap).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
folder: str
|
||||
Folder where fine spec numpy files generated for grid recordings with the wavetracker package can be found.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fill_freqs: ndarray
|
||||
Freuqencies corresponding to 1st dimension of the spectrogram.
|
||||
fill_times: ndarray
|
||||
Times corresponding to the 2nd dimenstion if the spectrigram.
|
||||
fill_spec: ndarray
|
||||
Spectrigram of the recording refered to in the input folder.
|
||||
"""
|
||||
fill_freqs, fill_times, fill_spec = [], [], []
|
||||
|
||||
if os.path.exists(os.path.join(folder, 'fill_spec.npy')):
|
||||
@ -41,6 +53,7 @@ def load_spec_data(folder):
|
||||
|
||||
return fill_freqs, fill_times, fill_spec
|
||||
|
||||
|
||||
def load_tracking_data(folder):
|
||||
base_path = Path(folder)
|
||||
EODf_v = np.load(base_path / 'fund_v.npy')
|
||||
@ -50,6 +63,7 @@ def load_tracking_data(folder):
|
||||
|
||||
return EODf_v, ident_v, idx_v, times_v
|
||||
|
||||
|
||||
def load_trial_data(folder):
|
||||
base_path = Path(folder)
|
||||
fish_freq = np.load(base_path / 'analysis' / 'fish_freq.npy')
|
||||
@ -79,6 +93,7 @@ def save_spec_pic(folder, s_trans, times, freq, t_idx0, t_idx1, f_idx0, f_idx1,
|
||||
|
||||
return fig_title, (size[0]*dpi, size[1]*dpi)
|
||||
|
||||
|
||||
def bboxes_from_file(times_v, fish_freq, rise_idx, rise_size, fish_baseline_freq_time, fish_baseline_freq, pic_save_str,
|
||||
bbox_df, cols, width, height, t0, t1, f0, f1):
|
||||
|
||||
@ -119,9 +134,6 @@ def bboxes_from_file(times_v, fish_freq, rise_idx, rise_size, fish_baseline_freq
|
||||
lower_freq_bound = lower_freq_bound[mask]
|
||||
upper_freq_bound = upper_freq_bound[mask]
|
||||
|
||||
# dt_bbox = right_time_bound - left_time_bound
|
||||
# df_bbox = upper_freq_bound - lower_freq_bound
|
||||
|
||||
left_time_bound -= 0.01 * (t1 - t0)
|
||||
right_time_bound += 0.05 * (t1 - t0)
|
||||
lower_freq_bound -= 0.01 * (f1 - f0)
|
||||
|
Loading…
Reference in New Issue
Block a user