inference.py will be rewritten to really infere images without csv files
This commit is contained in:
parent
cc6e97c2c8
commit
1042e44f37
11
README.md
11
README.md
@ -24,8 +24,8 @@ Use the script **./data/train_test_split.py** to split the original .csv file in
|
|||||||
training and one for testing (both also stored in ./data/dataset).
|
training and one for testing (both also stored in ./data/dataset).
|
||||||
|
|
||||||
### ToDos:
|
### ToDos:
|
||||||
* FIX: name of generated png images. HINT {XXX:6.0f}.replace(' ', '0')
|
* FIX: name of generated png images. HINT: {XXX:6.0f}.replace(' ', '0')
|
||||||
* transfere images from ./data/train to ./data/dataset
|
* on a long scale: only save raw file bounding boxes in frequency and time (t0, t1, f0, f1) and the hyperparameters of the corresponding spectrogram. USE THESE PARAMETERS IN DATASET_FN.
|
||||||
|
|
||||||
## model.py
|
## model.py
|
||||||
|
|
||||||
@ -51,6 +51,13 @@ im2 = ImageOps.grayscale(im1)
|
|||||||
|
|
||||||
* check other pretrained models from torchvision.models.detection, e.g. fasterrcnn_resnet50_fpn_v2
|
* check other pretrained models from torchvision.models.detection, e.g. fasterrcnn_resnet50_fpn_v2
|
||||||
|
|
||||||
|
## dataset.py
|
||||||
|
Contains custom datasets and dataloader. These are based on the images that are stored in
|
||||||
|
./data/dataset.
|
||||||
|
|
||||||
|
### ToDos:
|
||||||
|
* load/compute spectrogram directly and perform signal detection. E.g. spectrogram calculation as part of __getitem__
|
||||||
|
|
||||||
## config.py
|
## config.py
|
||||||
Containes Hyperparameters used by the scripts.
|
Containes Hyperparameters used by the scripts.
|
||||||
|
|
||||||
|
@ -17,7 +17,7 @@ import matplotlib.gridspec as gridspec
|
|||||||
from matplotlib.patches import Rectangle
|
from matplotlib.patches import Rectangle
|
||||||
|
|
||||||
|
|
||||||
def plot_inference(img_tensor, img_name, output, target, detection_threshold):
|
def plot_inference(img_tensor, img_name, output, detection_threshold):
|
||||||
|
|
||||||
fig = plt.figure(figsize=IMG_SIZE, num=img_name)
|
fig = plt.figure(figsize=IMG_SIZE, num=img_name)
|
||||||
gs = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1) #
|
gs = gridspec.GridSpec(1, 1, bottom=0, left=0, right=1, top=1) #
|
||||||
@ -35,13 +35,6 @@ def plot_inference(img_tensor, img_name, output, target, detection_threshold):
|
|||||||
(y1 - y0),
|
(y1 - y0),
|
||||||
fill=False, color="tab:green", linestyle='--', linewidth=2, zorder=10)
|
fill=False, color="tab:green", linestyle='--', linewidth=2, zorder=10)
|
||||||
)
|
)
|
||||||
for (x0, y0, x1, y1), l in zip(target['boxes'], target['labels']):
|
|
||||||
ax.add_patch(
|
|
||||||
Rectangle((x0, y0),
|
|
||||||
(x1 - x0),
|
|
||||||
(y1 - y0),
|
|
||||||
fill=False, color="white", linewidth=2, zorder=9)
|
|
||||||
)
|
|
||||||
|
|
||||||
ax.set_axis_off()
|
ax.set_axis_off()
|
||||||
plt.savefig(Path(INFERENCE_OUTDIR)/(os.path.splitext(img_name)[0] +'_inferred.png'), dpi=IMG_DPI)
|
plt.savefig(Path(INFERENCE_OUTDIR)/(os.path.splitext(img_name)[0] +'_inferred.png'), dpi=IMG_DPI)
|
||||||
|
Loading…
Reference in New Issue
Block a user