competition_experiments/ethogram.py
2023-06-16 11:14:59 +02:00

181 lines
8.0 KiB
Python

import os
import sys
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
import pandas as pd
import scipy.stats as scp
import networkx as nx
from IPython import embed
from event_time_correlations import load_and_converete_boris_events
glob_colors = ['#BA2D22', '#53379B', '#F47F17', '#3673A4', '#AAB71B', '#DC143C', '#1E90FF']
def plot_transition_matrix(matrix, labels):
fig, ax = plt.subplots()
im = ax.imshow(matrix)
ax.set_xticks(list(range(len(matrix))))
ax.set_yticks(list(range(len(matrix))))
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)
fig.colorbar(im)
plt.show()
def plot_transition_diagram(matrix, labels, node_size, threshold=5, save_str = 'rdm'):
matrix[matrix <= threshold] = 0
matrix = np.around(matrix, decimals=1)
fig, ax = plt.subplots(figsize=(21 / 2.54, 19 / 2.54))
fig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.95)
Graph = nx.from_numpy_array(matrix, create_using=nx.DiGraph)
node_labels = dict(zip(Graph, labels))
# Graph = nx.relabel_nodes(Graph, node_labels)
edge_labels = nx.get_edge_attributes(Graph, 'weight')
positions = nx.circular_layout(Graph)
positions2 = nx.circular_layout(Graph)
for p in positions:
positions2[p][0] *= 1.2
positions2[p][1] *= 1.2
# ToDo: nodes
nx.draw_networkx_nodes(Graph, pos=positions, node_size=node_size, ax=ax, alpha=0.5, node_color=np.array(glob_colors)[:len(node_size)])
nx.draw_networkx_labels(Graph, pos=positions2, labels=node_labels)
# google networkx drawing to get better graphs with networkx
# nx.draw(Graph, pos=positions, node_size=node_size, label=labels, with_labels=True, ax=ax)
# # ToDo: edges
edge_width = np.array([x / 5 for x in [*edge_labels.values()]])
edge_colors = np.array(glob_colors)[np.array([*edge_labels.keys()], dtype=int)[:, 0]]
edge_width[edge_width >= 6] = 6
# nx.draw_networkx_edges(Graph, pos=positions, node_size=node_size, width=edge_width,
# arrows=True, arrowsize=20,
# min_target_margin=25, min_source_margin=10, connectionstyle="arc3, rad=0.0",
# ax=ax)
# nx.draw_networkx_edge_labels(Graph, positions, label_pos=0.5, edge_labels=edge_labels, ax=ax, rotate=False)
nx.draw_networkx_edges(Graph, pos=positions, node_size=node_size, width=edge_width,
arrows=True, arrowsize=20,
min_target_margin=25, min_source_margin=10, connectionstyle="arc3, rad=0.025",
ax=ax, edge_color=edge_colors)
nx.draw_networkx_edge_labels(Graph, positions, label_pos=0.2, edge_labels=edge_labels, ax=ax, rotate=True)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.set_xlim(-1.3, 1.3)
ax.set_ylim(-1.3, 1.3)
# plt.title(title)
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', save_str + '.png'), dpi=300)
plt.close()
def main(base_path):
trial_summary = pd.read_csv(os.path.join(base_path, 'trial_summary.csv'), index_col=0)
chirp_notes = pd.read_csv(os.path.join(base_path, 'chirp_notes.csv'), index_col=0)
# trial_summary = trial_summary[chirp_notes['good'] == 1]
trial_mask = chirp_notes['good'] == 1
all_marcov_matrix = []
all_event_counts = []
for index, trial in trial_summary.iterrows():
trial_path = os.path.join(base_path, trial['recording'])
if not trial_mask[index]:
continue
if trial['group'] < 5:
continue
if not os.path.exists(os.path.join(trial_path, 'led_idxs.csv')):
continue
if not os.path.exists(os.path.join(trial_path, 'LED_frames.npy')):
continue
if trial['draw'] == 1:
continue
ids = np.load(os.path.join(trial_path, 'analysis', 'ids.npy'))
times = np.load(os.path.join(trial_path, 'times.npy'))
sorter = -1 if trial['win_ID'] != ids[0] else 1
### event times --> BORIS behavior
contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames = \
load_and_converete_boris_events(trial_path, trial['recording'], sr=20_000)
### communication
if not os.path.exists(os.path.join(trial_path, 'chirp_times_cnn.npy')):
continue
chirp_t = np.load(os.path.join(trial_path, 'chirp_times_cnn.npy'))
chirp_ids = np.load(os.path.join(trial_path, 'chirp_ids_cnn.npy'))
chirp_times = [chirp_t[chirp_ids == trial['win_ID']], chirp_t[chirp_ids == trial['lose_ID']]]
rise_idx = np.load(os.path.join(trial_path, 'analysis', 'rise_idx.npy'))[::sorter]
rise_idx_int = [np.array(rise_idx[i][~np.isnan(rise_idx[i])], dtype=int) for i in range(len(rise_idx))]
rise_times = [times[rise_idx_int[0]], times[rise_idx_int[1]]]
event_times = []
event_labels = []
loop_times = [chirp_times[1], rise_times[1], chirp_times[0], rise_times[0], ag_on_off_t_GRID[:, 0],
ag_on_off_t_GRID[:, 1], contact_t_GRID]
loop_labels = [r'chirp$_{lose}$', r'rise$_{lose}$', r'chirp$_{win}$', r'rise$_{win}$', r'chace$_{on}$', r'chace$_{off}$', 'contact']
event_counts = np.array([len(chirp_times[1]), len(rise_times[1]), len(chirp_times[0]), len(rise_times[0]), len(ag_on_off_t_GRID), len(ag_on_off_t_GRID), len(contact_t_GRID)])
for ll, t in zip(loop_labels, loop_times):
event_times.extend(t)
event_labels.extend(np.full(len(t), ll))
time_sorter = np.argsort(event_times)
event_times = np.array(event_times)[time_sorter]
event_labels = np.array(event_labels)[time_sorter]
marcov_matrix = np.zeros((len(loop_labels)+1, len(loop_labels)+1))
for enu_ori, label_ori in enumerate(loop_labels):
for enu_tar, label_tar in enumerate(loop_labels):
n = len(event_times[:-1][(event_labels[:-1] == label_ori) & (event_labels[1:] == label_tar) & (np.diff(event_times) <= 5)])
marcov_matrix[enu_ori, enu_tar] = n
for enu_tar, label_tar in enumerate(loop_labels):
n = len(event_times[:-1][(event_labels[1:] == label_tar) & (np.diff(event_times) > 5)])
marcov_matrix[-1, enu_tar] = n
embed()
quit()
### get those cases where ag_on does not point to event and no event points to corresponding ag_off ... add thise cases in marcov matrix
chase_on_idx = np.where(event_labels == loop_labels[4])[0]
chase_off_idx = np.where(event_labels == loop_labels[5])[0]
helper_mask = np.ones_like(chase_on_idx)
helper_mask[np.diff(event_times)[chase_on_idx] <= 5] = 0
helper_mask[np.diff(event_times)[chase_off_idx-1] <= 5] = 0
marcov_matrix[4, 5] += np.sum(helper_mask)
all_marcov_matrix.append(marcov_matrix)
all_event_counts.append(event_counts)
# plot_transition_matrix(marcov_matrix, loop_labels)
# plot_transition_diagram(marcov_matrix, loop_labels, node_size=event_counts)
# plot_transition_diagram(marcov_matrix / event_counts.reshape(len(event_counts), 1) * 100, loop_labels, node_size=event_counts)
all_marcov_matrix = np.array(all_marcov_matrix)
all_event_counts = np.array(all_event_counts)
collective_marcov_matrix = np.sum(all_marcov_matrix, axis=0)
collective_event_counts = np.sum(all_event_counts, axis=0)
plot_transition_matrix(collective_marcov_matrix, loop_labels)
plot_transition_diagram(collective_marcov_matrix / collective_event_counts.reshape(len(collective_event_counts), 1) * 100,
loop_labels, collective_event_counts, threshold=5, save_str='markov_all')
# for i in range(len(all_marcov_matrix)):
# plot_transition_diagram(
# all_marcov_matrix[i] / all_event_counts[i].reshape(len(all_event_counts[i]), 1) * 100,
# loop_labels, all_event_counts[i], threshold=5)
embed()
quit()
pass
if __name__ == '__main__':
main(sys.argv[1])