501 lines
24 KiB
Python
501 lines
24 KiB
Python
import os
|
|
import sys
|
|
import itertools
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.gridspec as gridspec
|
|
from matplotlib.patches import Patch
|
|
import pandas as pd
|
|
import scipy.stats as scp
|
|
from IPython import embed
|
|
from event_time_correlations import load_and_converete_boris_events, kde, gauss
|
|
|
|
female_color, male_color = '#e74c3c', '#3498db'
|
|
|
|
def iei_analysis(event_times, win_sex, lose_sex, kernal_w, title=''):
|
|
iei = []
|
|
for i in range(len(event_times)):
|
|
iei.append(np.diff(event_times[i]))
|
|
|
|
fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
|
|
gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.9)
|
|
ax = []
|
|
ax.append(fig.add_subplot(gs[0, 0]))
|
|
ax.append(fig.add_subplot(gs[0, 1], sharey=ax[0], sharex=ax[0]))
|
|
ax.append(fig.add_subplot(gs[1, 0], sharey=ax[0], sharex=ax[0]))
|
|
ax.append(fig.add_subplot(gs[1, 1], sharey=ax[0], sharex=ax[0]))
|
|
|
|
for i in range(len(iei)):
|
|
if win_sex[i] == 'm':
|
|
if lose_sex[i] == 'm':
|
|
color, linestyle = male_color, '-'
|
|
sp = 0
|
|
else:
|
|
color, linestyle = male_color, '--'
|
|
sp = 1
|
|
else:
|
|
if lose_sex[i] == 'm':
|
|
color, linestyle = female_color, '--'
|
|
sp = 2
|
|
else:
|
|
color, linestyle = female_color, '-'
|
|
sp = 3
|
|
|
|
|
|
conv_y = np.arange(0, np.percentile(np.hstack(iei), 80), .5)
|
|
kde_array = kde(iei[i], conv_y, kernal_w=kernal_w, kernal_h=1)
|
|
|
|
# kde_array /= np.sum(kde_array)
|
|
ax[sp].plot(conv_y, kde_array, zorder=2, color=color, linestyle=linestyle, lw=2)
|
|
|
|
ax[0].set_xlim(conv_y[0], conv_y[-1])
|
|
ax[0].set_ylabel('KDE', fontsize=12)
|
|
ax[2].set_ylabel('KDE', fontsize=12)
|
|
ax[2].set_xlabel('time [s]', fontsize=12)
|
|
ax[3].set_xlabel('time [s]', fontsize=12)
|
|
fig.suptitle(title, fontsize=12)
|
|
|
|
for a in ax:
|
|
a.tick_params(labelsize=10)
|
|
|
|
plt.setp(ax[1].get_yticklabels(), visible=False)
|
|
plt.setp(ax[3].get_yticklabels(), visible=False)
|
|
|
|
plt.setp(ax[0].get_xticklabels(), visible=False)
|
|
plt.setp(ax[1].get_xticklabels(), visible=False)
|
|
|
|
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'event_meta', f'{title}_iei.png'), dpi=300)
|
|
plt.close()
|
|
# plt.show()
|
|
|
|
# for iei, kernal_w in zip([ici_lose, ici_win, iri_lose, iri_win],
|
|
# [1, 1, 5, 50]):
|
|
#
|
|
# fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
|
|
# gs = gridspec.GridSpec(2, 2, left=0.1, bottom=0.1, right=0.95, top=0.95)
|
|
# ax = []
|
|
# ax.append(fig.add_subplot(gs[0, 0]))
|
|
# ax.append(fig.add_subplot(gs[0, 1], sharey=ax[0], sharex=ax[0]))
|
|
# ax.append(fig.add_subplot(gs[1, 0], sharey=ax[0], sharex=ax[0]))
|
|
# ax.append(fig.add_subplot(gs[1, 1], sharey=ax[0], sharex=ax[0]))
|
|
#
|
|
# for i in range(len(iei)):
|
|
# if win_sex[i] == 'm':
|
|
# if lose_sex[i] == 'm':
|
|
# color, linestyle = male_color, '-'
|
|
# sp = 0
|
|
# else:
|
|
# color, linestyle = male_color, '--'
|
|
# sp = 1
|
|
# else:
|
|
# if lose_sex[i] == 'm':
|
|
# color, linestyle = female_color, '--'
|
|
# sp = 2
|
|
# else:
|
|
# color, linestyle = female_color, '-'
|
|
# sp = 3
|
|
#
|
|
#
|
|
# conv_y = np.arange(0, np.percentile(np.hstack(iei), 90), .5)
|
|
# kde_array = kde(iei[i], conv_y, kernal_w=kernal_w, kernal_h=1)
|
|
#
|
|
# # kde_array /= np.sum(kde_array)
|
|
# ax[sp].plot(conv_y, kde_array, zorder=2, color=color, linestyle=linestyle, lw=2)
|
|
#
|
|
# plt.setp(ax[1].get_yticklabels(), visible=False)
|
|
# plt.setp(ax[3].get_yticklabels(), visible=False)
|
|
#
|
|
#
|
|
# plt.setp(ax[0].get_xticklabels(), visible=False)
|
|
# plt.setp(ax[1].get_xticklabels(), visible=False)
|
|
# plt.show()
|
|
|
|
|
|
def relative_rate_progression(all_event_t, title=''):
|
|
stop_t = 3*60*60
|
|
snippet_len = 15*60
|
|
|
|
snippet_starts = np.arange(0, stop_t, snippet_len)
|
|
all_snippet_ratio = []
|
|
for event_t in all_event_t:
|
|
if len(event_t) == 0:
|
|
continue
|
|
expected_snippet_count = len(event_t[event_t <= stop_t]) / (stop_t / snippet_len)
|
|
|
|
snippet_ratio = []
|
|
for s0 in snippet_starts:
|
|
snippet_count = len(event_t[(event_t >= s0) & (event_t < s0 + snippet_len)])
|
|
snippet_ratio.append(snippet_count/expected_snippet_count)
|
|
|
|
all_snippet_ratio.append(snippet_ratio)
|
|
all_snippet_ratio = np.array(all_snippet_ratio)
|
|
|
|
fig = plt.figure(figsize=(20/2.54, 12/2.54))
|
|
gs = gridspec.GridSpec(1, 1, left=.1, bottom=.1, right=0.95, top=0.95)
|
|
ax = fig.add_subplot(gs[0, 0])
|
|
|
|
plot_t = np.repeat(snippet_starts, 2)
|
|
plot_t[1::2] += snippet_len
|
|
|
|
for event_ratios in all_snippet_ratio:
|
|
plot_ratios = np.repeat(event_ratios, 2)
|
|
ax.plot(plot_t / 3600, plot_ratios, color='grey', lw=1, alpha=0.5)
|
|
# ax.plot(snippet_starts + snippet_len/2, event_ratios)
|
|
mean_ratio = np.median(all_snippet_ratio, axis=0)
|
|
plot_mean_ratio = np.repeat(mean_ratio, 2)
|
|
ax.plot(plot_t / 3600, plot_mean_ratio, color='k', lw=3)
|
|
ax.plot(plot_t / 3600, np.ones_like(plot_t), linestyle='dotted', lw=2, color='k')
|
|
|
|
ax.set_xlabel('time [h]', fontsize=12)
|
|
ax.set_ylabel('norm. event rate', fontsize=12)
|
|
ax.set_title(title)
|
|
ax.tick_params(labelsize=10)
|
|
|
|
ax.set_xlim(0, 3)
|
|
ax.set_ylim(0, 5)
|
|
|
|
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'event_meta', f'{title}_progression.png'), dpi=300)
|
|
plt.close()
|
|
# plt.show()
|
|
|
|
x = np.hstack(all_snippet_ratio)
|
|
y = np.hstack(np.tile(snippet_starts, (all_snippet_ratio.shape[0], 1)))
|
|
|
|
r, p = scp.pearsonr(x, y)
|
|
|
|
print(f'Progression {title}: pearson-r={r:.2f} p={p:.3f}')
|
|
|
|
|
|
|
|
|
|
|
|
def main(base_path):
|
|
# ToDo: for chirp and rise analysis different datasets!!!
|
|
if not os.path.exists(os.path.join(os.path.split(__file__)[0], 'figures', 'event_meta')):
|
|
os.makedirs(os.path.join(os.path.split(__file__)[0], 'figures', 'event_meta'))
|
|
|
|
if not os.path.exists(os.path.join(os.path.split(__file__)[0], 'figures', 'event_time_corr')):
|
|
os.makedirs(os.path.join(os.path.split(__file__)[0], 'figures', 'event_time_corr'))
|
|
|
|
|
|
|
|
trial_summary = pd.read_csv(os.path.join(base_path, 'trial_summary.csv'), index_col=0)
|
|
chirp_notes = pd.read_csv(os.path.join(base_path, 'chirp_notes.csv'), index_col=0)
|
|
trial_mask = chirp_notes['good'] == 1
|
|
# trial_summary = trial_summary[chirp_notes['good'] == 1]
|
|
|
|
all_rise_times_lose = []
|
|
all_rise_times_win = []
|
|
all_chirp_times_lose = []
|
|
all_chirp_times_win = []
|
|
win_sex = []
|
|
lose_sex = []
|
|
|
|
all_contact_t = []
|
|
all_ag_on_t = []
|
|
all_ag_off_t = []
|
|
|
|
for index, trial in trial_summary.iterrows():
|
|
print(index, len(trial_summary))
|
|
got_boris = False
|
|
|
|
trial_path = os.path.join(base_path, trial['recording'])
|
|
|
|
if trial['group'] < 3:
|
|
continue
|
|
if trial['draw'] == 1:
|
|
continue
|
|
if os.path.exists(os.path.join(trial_path, 'led_idxs.csv')):
|
|
got_boris = True
|
|
if os.path.exists(os.path.join(trial_path, 'LED_frames.npy')):
|
|
got_boris = True
|
|
|
|
ids = np.load(os.path.join(trial_path, 'analysis', 'ids.npy'))
|
|
times = np.load(os.path.join(trial_path, 'times.npy'))
|
|
sorter = -1 if trial['win_ID'] != ids[0] else 1
|
|
|
|
### event times --> BORIS behavior
|
|
if got_boris:
|
|
contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames = \
|
|
load_and_converete_boris_events(trial_path, trial['recording'], sr=20_000)
|
|
all_contact_t.append(contact_t_GRID)
|
|
all_ag_on_t.append(ag_on_off_t_GRID[:, 0])
|
|
all_ag_off_t.append(ag_on_off_t_GRID[:, 1])
|
|
else:
|
|
all_contact_t.append(np.array([]))
|
|
all_ag_on_t.append(np.array([]))
|
|
all_ag_off_t.append(np.array([]))
|
|
|
|
### communication
|
|
if not os.path.exists(os.path.join(trial_path, 'chirp_times_cnn.npy')):
|
|
continue
|
|
chirp_t = np.load(os.path.join(trial_path, 'chirp_times_cnn.npy'))
|
|
chirp_ids = np.load(os.path.join(trial_path, 'chirp_ids_cnn.npy'))
|
|
chirp_times = [chirp_t[chirp_ids == trial['win_ID']], chirp_t[chirp_ids == trial['lose_ID']]]
|
|
|
|
|
|
rise_idx = np.load(os.path.join(trial_path, 'analysis', 'rise_idx.npy'))[::sorter]
|
|
rise_idx_int = [np.array(rise_idx[i][~np.isnan(rise_idx[i])], dtype=int) for i in range(len(rise_idx))]
|
|
rise_times = [times[rise_idx_int[0]], times[rise_idx_int[1]]]
|
|
|
|
all_rise_times_lose.append(rise_times[1])
|
|
all_rise_times_win.append(rise_times[0])
|
|
|
|
if trial_mask[index]:
|
|
all_chirp_times_lose.append(chirp_times[1])
|
|
all_chirp_times_win.append(chirp_times[0])
|
|
else:
|
|
all_chirp_times_lose.append(np.array([]))
|
|
all_chirp_times_win.append(np.array([]))
|
|
|
|
win_sex.append(trial['sex_win'])
|
|
lose_sex.append(trial['sex_lose'])
|
|
|
|
win_sex = np.array(win_sex)
|
|
lose_sex = np.array(lose_sex)
|
|
|
|
iei_analysis(all_chirp_times_lose, win_sex, lose_sex, kernal_w=1, title=r'chirps$_{lose}$')
|
|
iei_analysis(all_chirp_times_win, win_sex, lose_sex, kernal_w=1, title=r'chirps$_{win}$')
|
|
iei_analysis(all_rise_times_lose, win_sex, lose_sex, kernal_w=5, title=r'rises$_{lose}$')
|
|
iei_analysis(all_rise_times_win, win_sex, lose_sex, kernal_w=50, title=r'rises$_{win}$')
|
|
|
|
print('')
|
|
relative_rate_progression(all_chirp_times_lose, title=r'chirp$_{lose}$')
|
|
relative_rate_progression(all_chirp_times_win, title=r'chirp$_{win}$')
|
|
relative_rate_progression(all_rise_times_lose, title=r'rises$_{lose}$')
|
|
relative_rate_progression(all_rise_times_win, title=r'rises$_{win}$')
|
|
|
|
relative_rate_progression(all_contact_t, title=r'contact')
|
|
relative_rate_progression(all_ag_on_t, title=r'chasing')
|
|
|
|
|
|
#############################################################################
|
|
for all_event_t, event_name in zip([all_chirp_times_lose, all_chirp_times_win, all_rise_times_lose, all_rise_times_win],
|
|
[r'chirps$_{lose}$', r'chirps$_{win}$', r'rises$_{lose}$', r'rises$_{win}$']):
|
|
print('')
|
|
all_pre_chase_event_mask = []
|
|
all_chase_event_mask = []
|
|
all_end_chase_event_mask = []
|
|
all_after_chase_event_mask = []
|
|
all_before_contact_event_mask = []
|
|
all_after_contact_event_mask = []
|
|
|
|
all_pre_chase_time = []
|
|
all_chase_time = []
|
|
all_end_chase_time = []
|
|
all_after_chase_time = []
|
|
all_before_contact_time = []
|
|
all_after_contact_time = []
|
|
|
|
video_trial_win_sex = []
|
|
video_trial_lose_sex = []
|
|
|
|
time_tol = 5
|
|
|
|
for enu, contact_t, ag_on_t, ag_off_t, event_times in zip(
|
|
np.arange(len(all_contact_t)), all_contact_t, all_ag_on_t, all_ag_off_t, all_event_t):
|
|
|
|
if len(ag_on_t) == 0:
|
|
continue
|
|
|
|
if len(event_times) == 0:
|
|
continue
|
|
|
|
pre_chase_event_mask = np.zeros_like(event_times)
|
|
chase_event_mask = np.zeros_like(event_times)
|
|
end_chase_event_mask = np.zeros_like(event_times)
|
|
after_chase_event_mask = np.zeros_like(event_times)
|
|
|
|
video_trial_win_sex.append(win_sex[enu])
|
|
video_trial_lose_sex.append(lose_sex[enu])
|
|
|
|
for chase_on_t, chase_off_t in zip(ag_on_t, ag_off_t):
|
|
pre_chase_event_mask[(event_times >= chase_on_t - time_tol) & (event_times < chase_on_t)] = 1
|
|
chase_event_mask[(event_times >= chase_on_t) & (event_times < chase_off_t - time_tol)] = 1
|
|
end_chase_event_mask[(event_times >= chase_off_t - time_tol) & (event_times < chase_off_t)] = 1
|
|
after_chase_event_mask[(event_times >= chase_off_t) & (event_times < chase_off_t + time_tol)] = 1
|
|
|
|
all_pre_chase_event_mask.append(pre_chase_event_mask)
|
|
all_chase_event_mask.append(chase_event_mask)
|
|
all_end_chase_event_mask.append(end_chase_event_mask)
|
|
all_after_chase_event_mask.append(after_chase_event_mask)
|
|
|
|
all_pre_chase_time.append(len(ag_on_t) * time_tol)
|
|
chasing_dur = (ag_off_t - ag_on_t) - time_tol
|
|
chasing_dur[chasing_dur < 0 ] = 0
|
|
all_chase_time.append(np.sum(chasing_dur))
|
|
all_end_chase_time.append(len(ag_on_t) * time_tol)
|
|
all_after_chase_time.append(len(ag_on_t) * time_tol)
|
|
|
|
before_countact_event_mask = np.zeros_like(event_times)
|
|
after_countact_event_mask = np.zeros_like(event_times)
|
|
for ct in contact_t:
|
|
before_countact_event_mask[(event_times >= ct-time_tol) & (event_times < ct)] = 1
|
|
after_countact_event_mask[(event_times >= ct) & (event_times < ct+time_tol)] = 1
|
|
all_before_contact_event_mask.append(before_countact_event_mask)
|
|
all_after_contact_event_mask.append(after_countact_event_mask)
|
|
|
|
all_before_contact_time.append(len(contact_t) * time_tol)
|
|
all_after_contact_time.append(len(contact_t) * time_tol)
|
|
|
|
all_pre_chase_time = np.array(all_pre_chase_time)
|
|
all_chase_time = np.array(all_chase_time)
|
|
all_end_chase_time = np.array(all_end_chase_time)
|
|
all_after_chase_time = np.array(all_after_chase_time)
|
|
all_before_contact_time = np.array(all_before_contact_time)
|
|
all_after_contact_time = np.array(all_after_contact_time)
|
|
|
|
video_trial_win_sex = np.array(video_trial_win_sex)
|
|
video_trial_lose_sex = np.array(video_trial_lose_sex)
|
|
|
|
all_pre_chase_time_ratio = all_pre_chase_time / (3*60*60)
|
|
all_chase_time_ratio = all_chase_time / (3*60*60)
|
|
all_end_chase_time_ratio = all_end_chase_time / (3*60*60)
|
|
all_after_chase_time_ratio = all_after_chase_time / (3*60*60)
|
|
all_before_countact_time_ratio = all_before_contact_time / (3*60*60)
|
|
all_after_countact_time_ratio = all_after_contact_time / (3*60*60)
|
|
|
|
all_pre_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_pre_chase_event_mask)))
|
|
all_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_chase_event_mask)))
|
|
all_end_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_end_chase_event_mask)))
|
|
all_after_chase_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_after_chase_event_mask)))
|
|
all_before_countact_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_before_contact_event_mask)))
|
|
all_after_countact_event_ratio = np.array(list(map(lambda x: np.sum(x)/len(x), all_after_contact_event_mask)))
|
|
|
|
for x, y, name in [[all_pre_chase_event_ratio, all_pre_chase_time_ratio, 'pre chase'],
|
|
[all_chase_event_ratio, all_chase_time_ratio, 'while chase'],
|
|
[all_end_chase_event_ratio, all_end_chase_time_ratio, 'end chase'],
|
|
[all_after_chase_event_ratio, all_after_chase_time_ratio, 'after chase'],
|
|
[all_before_countact_event_ratio, all_before_countact_time_ratio, 'pre contact'],
|
|
[all_after_countact_event_ratio, all_after_countact_time_ratio, 'post contact']]:
|
|
t, p = scp.ttest_rel(x, y)
|
|
print(f'{event_name} {name}: t={t:.2f} p={p:.3f}')
|
|
|
|
|
|
fig = plt.figure(figsize=(20/2.54, 12/2.54))
|
|
gs = gridspec.GridSpec(1, 2, left=0.1, bottom=0.15, right=0.95, top=0.9)
|
|
ax = fig.add_subplot(gs[0, 0])
|
|
ax_pie = fig.add_subplot(gs[0, 1])
|
|
|
|
ax.boxplot([all_pre_chase_event_ratio/all_pre_chase_time_ratio,
|
|
all_chase_event_ratio/all_chase_time_ratio,
|
|
all_end_chase_event_ratio/all_end_chase_time_ratio,
|
|
all_after_chase_event_ratio/all_after_chase_time_ratio,
|
|
all_before_countact_event_ratio/all_before_countact_time_ratio,
|
|
all_after_countact_event_ratio/all_after_countact_time_ratio], positions=np.arange(6), sym='', zorder=2)
|
|
|
|
ylim = list(ax.get_ylim())
|
|
ylim[0] = -.1 if ylim[0] < -.1 else ylim[0]
|
|
ylim[1] = 1.1 if ylim[1] < 1.1 else ylim[1]
|
|
##############################################################################
|
|
for sex_w, sex_l in itertools.product(['m', 'f'], repeat=2):
|
|
mec = 'k' if sex_w == sex_l else 'None'
|
|
if 'lose' in event_name:
|
|
marker='o'
|
|
c = male_color if sex_l == 'm' else female_color
|
|
elif "win" in event_name:
|
|
marker='p'
|
|
c = male_color if sex_w == 'm' else female_color
|
|
else:
|
|
print('error')
|
|
embed()
|
|
quit()
|
|
values = np.array(all_pre_chase_event_ratio/all_pre_chase_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
|
|
ax.plot(np.ones_like(values) * 0, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
|
|
|
|
values = np.array(all_chase_event_ratio/all_chase_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
|
|
ax.plot(np.ones_like(values) * 1, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
|
|
|
|
values = np.array(all_end_chase_event_ratio/all_end_chase_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
|
|
ax.plot(np.ones_like(values) * 2, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
|
|
|
|
values = np.array(all_after_chase_event_ratio/all_after_chase_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
|
|
ax.plot(np.ones_like(values) * 3, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
|
|
|
|
values = np.array(all_before_countact_event_ratio/all_before_countact_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
|
|
ax.plot(np.ones_like(values) * 4, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
|
|
|
|
values = np.array(all_after_countact_event_ratio/all_after_countact_time_ratio)[(video_trial_win_sex == sex_w) & (video_trial_lose_sex == sex_l)]
|
|
ax.plot(np.ones_like(values) * 5, values, marker=marker, linestyle='None', color=c, mec=mec, markersize=8, zorder=1)
|
|
|
|
# ax.plot(np.ones_like(all_pre_chase_event_ratio) * 0, all_pre_chase_event_ratio/all_pre_chase_time_ratio, 'ok')
|
|
# ax.plot(np.ones_like(all_chase_event_ratio) * 1, all_chase_event_ratio/all_chase_time_ratio, 'ok')
|
|
# ax.plot(np.ones_like(all_end_chase_event_ratio) * 2, all_end_chase_event_ratio/all_end_chase_time_ratio, 'ok')
|
|
# ax.plot(np.ones_like(all_after_chase_event_ratio) * 3, all_after_chase_event_ratio/all_after_chase_time_ratio, 'ok')
|
|
|
|
# ax.plot(np.ones_like(all_before_countact_event_ratio) * 4, all_before_countact_event_ratio/all_before_countact_time_ratio, 'ok')
|
|
##############################################################################
|
|
|
|
ax.plot(np.arange(7)-1, np.ones(7), linestyle='dotted', lw=2, color='k')
|
|
ax.set_xlim(-0.5, 5.5)
|
|
ax.set_ylim(ylim[0], ylim[1])
|
|
|
|
ax.set_ylabel(r'rel. count$_{event}$ / rel. time$_{event}$', fontsize=12)
|
|
ax.set_xticks(np.arange(6))
|
|
ax.set_xticklabels([r'chase$_{before}$', r'chasing', r'chase$_{end}$', r'chase$_{after}$', 'contact$_{before}$', 'contact$_{after}$'], rotation=45)
|
|
ax.tick_params(labelsize=10)
|
|
# ax.set_title(event_name)
|
|
fig.suptitle(f'{event_name}: n={len(np.hstack(all_event_t))}')
|
|
# plt.show()
|
|
|
|
###############################################
|
|
flat_pre_chase_event_mask = np.hstack(all_pre_chase_event_mask)
|
|
flat_chase_event_mask = np.hstack(all_chase_event_mask)
|
|
flat_end_chase_event_mask = np.hstack(all_end_chase_event_mask)
|
|
flat_after_chase_event_mask = np.hstack(all_after_chase_event_mask)
|
|
flat_before_countact_event_mask = np.hstack(all_before_contact_event_mask)
|
|
flat_after_countact_event_mask = np.hstack(all_after_contact_event_mask)
|
|
|
|
flat_pre_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
|
|
flat_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
|
|
flat_end_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
|
|
flat_after_chase_event_mask[(flat_before_countact_event_mask == 1) | (flat_after_countact_event_mask == 1)] = 0
|
|
|
|
event_context_values = [np.sum(flat_pre_chase_event_mask) / len(flat_pre_chase_event_mask),
|
|
np.sum(flat_chase_event_mask) / len(flat_chase_event_mask),
|
|
np.sum(flat_end_chase_event_mask) / len(flat_end_chase_event_mask),
|
|
np.sum(flat_after_chase_event_mask) / len(flat_after_chase_event_mask),
|
|
np.sum(flat_before_countact_event_mask) / len(flat_before_countact_event_mask),
|
|
np.sum(flat_after_countact_event_mask) / len(flat_after_countact_event_mask)]
|
|
|
|
event_context_values.append(1 - np.sum(event_context_values))
|
|
|
|
time_context_values = [np.sum(all_pre_chase_time), np.sum(all_chase_time), np.sum(all_end_chase_time),
|
|
np.sum(all_after_chase_time), np.sum(all_before_contact_time), np.sum(all_after_contact_time)]
|
|
|
|
time_context_values.append(len(all_pre_chase_time) * 3*60*60 - np.sum(time_context_values))
|
|
time_context_values /= np.sum(time_context_values)
|
|
|
|
# fig, ax = plt.subplots(figsize=(12/2.54,12/2.54))
|
|
size = 0.3
|
|
outer_colors = ['tab:red', 'tab:orange', 'yellow', 'tab:green', 'k','tab:brown', 'tab:grey']
|
|
ax_pie.pie(event_context_values, radius=1, colors=outer_colors,
|
|
wedgeprops=dict(width=size, edgecolor='w'), startangle=90, center=(0, 1))
|
|
ax_pie.pie(time_context_values, radius=1-size, colors=outer_colors,
|
|
wedgeprops=dict(width=size, edgecolor='w', alpha=.6), startangle=90, center=(0, 1))
|
|
|
|
ax_pie.set_title(r'event context')
|
|
legend_elements = [Patch(facecolor='tab:red', edgecolor='w', label='%.1f' % (event_context_values[0] * 100) + '%'),
|
|
Patch(facecolor='tab:orange', edgecolor='w', label='%.1f' % (event_context_values[1] * 100) + '%'),
|
|
Patch(facecolor='yellow', edgecolor='w', label='%.1f' % (event_context_values[2] * 100) + '%'),
|
|
Patch(facecolor='tab:green', edgecolor='w', label='%.1f' % (event_context_values[3] * 100) + '%'),
|
|
Patch(facecolor='k', edgecolor='w', label='%.1f' % (event_context_values[4] * 100) + '%'),
|
|
Patch(facecolor='tab:brown', edgecolor='w', label='%.1f' % (event_context_values[5] * 100) + '%'),
|
|
Patch(facecolor='tab:red', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[0] * 100) + '%'),
|
|
Patch(facecolor='tab:orange', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[1] * 100) + '%'),
|
|
Patch(facecolor='yellow', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[2] * 100) + '%'),
|
|
Patch(facecolor='tab:green', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[3] * 100) + '%'),
|
|
Patch(facecolor='k', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[4] * 100) + '%'),
|
|
Patch(facecolor='tab:brown', alpha=0.6, edgecolor='w', label='%.1f' % (time_context_values[5] * 100) + '%')]
|
|
|
|
ax_pie.legend(handles=legend_elements, loc='lower right', ncol=2, bbox_to_anchor=(1.15, -0.25), frameon=False, fontsize=9)
|
|
|
|
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'event_time_corr', f'{event_name}_categories.png'), dpi=300)
|
|
plt.close()
|
|
# plt.show()
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main(sys.argv[1])
|