223 lines
8.1 KiB
Python
223 lines
8.1 KiB
Python
import os
|
|
import sys
|
|
import argparse
|
|
import time
|
|
|
|
import numpy as np
|
|
try:
|
|
import cupy as cp
|
|
except ImportError:
|
|
import numpy as cp
|
|
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.gridspec as gridspec
|
|
import pandas as pd
|
|
from IPython import embed
|
|
from tqdm import tqdm
|
|
|
|
|
|
def load_and_converete_boris_events(trial_path, recording, sr):
|
|
def converte_video_frames_to_grid_idx(event_frames, led_frames, led_idx):
|
|
event_idx_grid = (event_frames - led_frames[0]) / (led_frames[-1] - led_frames[0]) * (led_idx[-1] - led_idx[0]) + led_idx[0]
|
|
return event_idx_grid
|
|
|
|
# idx in grid-recording
|
|
led_idx = pd.read_csv(os.path.join(trial_path, 'led_idxs.csv'), header=None).iloc[:, 0].to_numpy()
|
|
# frames where LED gets switched on
|
|
led_frames = np.load(os.path.join(trial_path, 'LED_frames.npy'))
|
|
|
|
times, behavior, t_ag_on_off, t_contact, video_FPS = load_boris(trial_path, recording)
|
|
|
|
contact_frame = np.array(np.round(t_contact * video_FPS), dtype=int)
|
|
ag_on_off_frame = np.array(np.round(t_ag_on_off * video_FPS), dtype=int)
|
|
|
|
# led_t_GRID = led_idx / sr
|
|
contact_t_GRID = converte_video_frames_to_grid_idx(contact_frame, led_frames, led_idx) / sr
|
|
ag_on_off_t_GRID = converte_video_frames_to_grid_idx(ag_on_off_frame, led_frames, led_idx) / sr
|
|
|
|
return contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames
|
|
|
|
|
|
def load_boris(trial_path, recording):
|
|
boris_file = '-'.join(recording.split('-')[:3]) + '.csv'
|
|
|
|
data = pd.read_csv(os.path.join(trial_path, boris_file))
|
|
times = data['Start (s)']
|
|
behavior = data['Behavior']
|
|
|
|
t_ag_on = times[behavior == 0]
|
|
t_ag_off = times[behavior == 1]
|
|
|
|
t_ag_on_off = []
|
|
for t in t_ag_on:
|
|
t1 = np.array(t_ag_off)[t_ag_off > t]
|
|
if len(t1) >= 1:
|
|
t_ag_on_off.append(np.array([t, t1[0]]))
|
|
|
|
t_contact = times[behavior == 2]
|
|
|
|
return times, behavior, np.array(t_ag_on_off), t_contact.to_numpy(), data['FPS'][0]
|
|
|
|
|
|
def gauss(t, shift, sigma, size, norm = False):
|
|
if not hasattr(shift, '__len__'):
|
|
g = np.exp(-((t - shift) / sigma) ** 2 / 2) * size
|
|
if norm:
|
|
g /= np.sum(g)
|
|
return g
|
|
else:
|
|
t = np.array([t, ] * len(shift))
|
|
res = np.exp(-((t.transpose() - shift).transpose() / sigma) ** 2 / 2) * size
|
|
return res
|
|
|
|
|
|
def event_centered_times(centered_event_times, surrounding_event_times, max_dt = np.inf):
|
|
|
|
event_dt = []
|
|
for Cevent_t in centered_event_times:
|
|
Cdt = np.array(surrounding_event_times - Cevent_t)
|
|
event_dt.extend(Cdt[np.abs(Cdt) <= max_dt])
|
|
|
|
return np.array(event_dt)
|
|
|
|
def kde(event_dt, max_dt = 60):
|
|
kernal_w = 1
|
|
kernal_h = 0.2
|
|
|
|
conv_t = np.arange(-max_dt, max_dt, 1)
|
|
conv_array = np.zeros(len(conv_t))
|
|
|
|
for e in event_dt:
|
|
conv_array += gauss(conv_t, e, kernal_w, kernal_h, norm=True)
|
|
|
|
# plt.plot(conv_t, conv_array)
|
|
return conv_array
|
|
|
|
|
|
def permulation_kde(event_dt, repetitions = 2000, max_dt = 60, max_mem_use_GB = 4, norm_count = 1):
|
|
def chunk_permutation(select_event_dt, conv_tt, n_chuck, max_jitter, kernal_w, kernal_h):
|
|
# array.shape = (120, 100, 15486) = (len(conv_t), repetitions, len(event_dt))
|
|
# event_dt_perm = cp.tile(event_dt, (len(conv_t), repetitions, 1))
|
|
event_dt_perm = cp.tile(select_event_dt, (len(conv_tt), n_chuck, 1))
|
|
jitter = cp.random.uniform(-max_jitter, max_jitter, size=(event_dt_perm.shape[1], event_dt_perm.shape[2]))
|
|
jitter = cp.expand_dims(jitter, axis=0)
|
|
|
|
event_dt_perm += jitter
|
|
# conv_t_perm = cp.tile(conv_tt, (1, repetitions, len(event_dt)))
|
|
|
|
gauss_3d = cp.exp(-((conv_tt - event_dt_perm) / kernal_w) ** 2 / 2) * kernal_h
|
|
# gauss_3d /= np.sum(gauss_3d, axis=0)
|
|
|
|
kde_3d = cp.sum(gauss_3d, axis = 2).transpose()
|
|
|
|
|
|
try:
|
|
kde_3d_numpy = cp.asnumpy(kde_3d)
|
|
del event_dt_perm, gauss_3d, kde_3d
|
|
return kde_3d_numpy
|
|
|
|
except AttributeError:
|
|
del event_dt_perm, gauss_3d
|
|
return kde_3d
|
|
|
|
t0 = time.time()
|
|
kernal_w = 1
|
|
kernal_h = 0.2
|
|
|
|
max_jitter = 120
|
|
select_event_dt = event_dt[np.abs(event_dt) <= max_dt + max_jitter*2]
|
|
|
|
conv_t = cp.arange(-max_dt, max_dt, 1)
|
|
conv_tt = cp.reshape(conv_t, (len(conv_t), 1, 1))
|
|
|
|
chunk_size = int(np.floor(max_mem_use_GB / (select_event_dt.nbytes * conv_t.size / 1e9)))
|
|
chunk_collector =[]
|
|
|
|
for _ in range(repetitions // chunk_size):
|
|
# for _ in range(3):
|
|
chunk_boot_KDE = chunk_permutation(select_event_dt, conv_tt, chunk_size, max_jitter, kernal_w, kernal_h)
|
|
chunk_collector.extend(chunk_boot_KDE)
|
|
# # array.shape = (120, 100, 15486) = (len(conv_t), repetitions, len(event_dt))
|
|
# # event_dt_perm = cp.tile(event_dt, (len(conv_t), repetitions, 1))
|
|
# event_dt_perm = cp.tile(event_dt, (len(conv_t), chunk_size, 1))
|
|
# jitter = np.random.uniform(-max_jitter, max_jitter, size=(event_dt_perm.shape[1], event_dt_perm.shape[2]))
|
|
# jitter = np.expand_dims(jitter, axis=0)
|
|
#
|
|
# event_dt_perm += jitter
|
|
# # conv_t_perm = cp.tile(conv_tt, (1, repetitions, len(event_dt)))
|
|
#
|
|
# gauss_3d = cp.exp(-((conv_tt - event_dt_perm) / kernal_w) ** 2 / 2) * kernal_h
|
|
# kde_3d = cp.sum(gauss_3d, axis = 2).transpose()
|
|
# try:
|
|
# kde_3d_numpy = cp.asnumpy(kde_3d)
|
|
# chunk_collector.extend(kde_3d_numpy)
|
|
# except AttributeError:
|
|
# chunk_collector.extend(kde_3d)
|
|
# del event_dt_perm, gauss_3d, kde_3d
|
|
chunk_boot_KDE = chunk_permutation(select_event_dt, conv_tt, repetitions % chunk_size, max_jitter, kernal_w, kernal_h)
|
|
chunk_collector.extend(chunk_boot_KDE)
|
|
chunk_collector = np.array(chunk_collector)
|
|
# ToDo: this works but is incorrect i think
|
|
chunk_collector /= np.sum(chunk_collector, axis=1).reshape(chunk_collector.shape[0], 1)
|
|
print(f'bootstrap with {repetitions:.0f} repetitions took {time.time() - t0:.2f}s.')
|
|
|
|
# fig, ax = plt.subplots()
|
|
# for i in range(len(chunk_collector)):
|
|
# ax.plot(cp.asnumpy(conv_t), chunk_collector[i])
|
|
|
|
return cp.asnumpy(conv_t), chunk_collector
|
|
|
|
|
|
def main(base_path):
|
|
trial_summary = pd.read_csv('trial_summary.csv', index_col=0)
|
|
|
|
lose_chrips_centered_on_ag_off_t = []
|
|
norm_count = []
|
|
for index, trial in tqdm(trial_summary.iterrows()):
|
|
trial_path = os.path.join(base_path, trial['recording'])
|
|
|
|
if trial['group'] < 5:
|
|
continue
|
|
if not os.path.exists(os.path.join(trial_path, 'led_idxs.csv')):
|
|
continue
|
|
if not os.path.exists(os.path.join(trial_path, 'LED_frames.npy')):
|
|
continue
|
|
|
|
ids = np.load(os.path.join(trial_path, 'analysis', 'ids.npy'))
|
|
times = np.load(os.path.join(trial_path, 'times.npy'))
|
|
sorter = -1 if trial['win_ID'] != ids[0] else 1
|
|
|
|
### event times --> BORIS behavior
|
|
contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames = \
|
|
load_and_converete_boris_events(trial_path, trial['recording'], sr=20_000)
|
|
|
|
### communication
|
|
if not os.path.exists(os.path.join(trial_path, 'chirp_times_cnn.npy')):
|
|
continue
|
|
chirp_t = np.load(os.path.join(trial_path, 'chirp_times_cnn.npy'))
|
|
chirp_ids = np.load(os.path.join(trial_path, 'chirp_ids_cnn.npy'))
|
|
chirp_times = [chirp_t[chirp_ids == trial['win_ID']], chirp_t[chirp_ids == trial['lose_ID']]]
|
|
|
|
|
|
rise_idx = np.load(os.path.join(trial_path, 'analysis', 'rise_idx.npy'))[::sorter]
|
|
rise_idx_int = [np.array(rise_idx[i][~np.isnan(rise_idx[i])], dtype=int) for i in range(len(rise_idx))]
|
|
rise_times = [times[rise_idx_int[0]], times[rise_idx_int[1]]]
|
|
|
|
lose_chrips_centered_on_ag_off_t.append(event_centered_times(ag_on_off_t_GRID[:, 1], chirp_times[1]))
|
|
norm_count.append(len(chirp_times[1]))
|
|
|
|
kde_array = kde(np.hstack(lose_chrips_centered_on_ag_off_t))
|
|
|
|
conv_t, boot_kde = permulation_kde(np.hstack(lose_chrips_centered_on_ag_off_t), norm_count=norm_count)
|
|
|
|
fig, ax = plt.subplots()
|
|
for i in range(len(boot_kde)):
|
|
ax.plot(conv_t, boot_kde[i])
|
|
|
|
ax.plot(conv_t, kde_array, color='k', lw=3)
|
|
plt.show()
|
|
pass
|
|
|
|
if __name__ == '__main__':
|
|
main(sys.argv[1])
|