648 lines
31 KiB
Python
648 lines
31 KiB
Python
import os
|
|
import sys
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.gridspec as gridspec
|
|
from matplotlib.patches import Patch
|
|
from matplotlib.lines import Line2D
|
|
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
|
import numpy as np
|
|
import pandas as pd
|
|
import scipy.stats as scp
|
|
import networkx as nx
|
|
|
|
from thunderfish.powerspectrum import decibel
|
|
|
|
from IPython import embed
|
|
from event_time_correlations import load_and_converete_boris_events
|
|
glob_colors = ['#BA2D22', '#53379B', '#F47F17', '#3673A4', '#AAB71B', '#DC143C', '#1E90FF', 'k']
|
|
glob_colors_new = ['tab:green', 'tab:olive', 'tab:red', 'tab:orange', 'tab:blue', 'k']
|
|
|
|
|
|
def plot_transition_matrix(matrix, labels):
|
|
fig = plt.figure(figsize=(20/2.54, 20/2.54))
|
|
#gs = gridspec.GridSpec(1, 2, left=0.1, bottom=0.1, right=0.9, top=0.95, wspace=0.1, width_ratios=[8, 1])
|
|
gs = gridspec.GridSpec(1, 1, left=0.1, bottom=0.1, right=0.925, top=0.95)
|
|
ax = fig.add_subplot(gs[0, 0])
|
|
|
|
divider = make_axes_locatable(ax)
|
|
cax = divider.append_axes('right', size='5%', pad=0.05)
|
|
|
|
# cax = fig.add_subplot(gs[0, 1])
|
|
im = ax.imshow(matrix)
|
|
ax.set_xticks(list(range(len(matrix))))
|
|
ax.set_yticks(list(range(len(matrix))))
|
|
ax.set_xticklabels(labels, rotation=45)
|
|
ax.set_yticklabels(labels)
|
|
|
|
fig.colorbar(im, cax=cax, orientation='vertical')
|
|
|
|
ax.tick_params(labelsize=10)
|
|
cax.tick_params(labelsize=10)
|
|
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', 'event_counts' + '.png'), dpi=300)
|
|
plt.close()
|
|
|
|
|
|
def plot_transition_diagram(matrix, labels, node_size, ax, threshold=5,
|
|
color_by_origin=False, color_by_target=False, title='', color_palet=glob_colors):
|
|
|
|
|
|
|
|
matrix[matrix <= threshold] = 0
|
|
matrix = np.around(matrix, decimals=1)
|
|
Graph = nx.from_numpy_array(matrix, create_using=nx.DiGraph)
|
|
|
|
node_labels = dict(zip(Graph, labels))
|
|
# Graph = nx.relabel_nodes(Graph, node_labels)
|
|
|
|
edge_labels = nx.get_edge_attributes(Graph, 'weight')
|
|
positions = nx.circular_layout(Graph)
|
|
positions2 = nx.circular_layout(Graph)
|
|
for p in positions:
|
|
positions2[p][0] *= 1.2
|
|
positions2[p][1] *= 1.2
|
|
|
|
# ToDo: nodes
|
|
# nx.draw_networkx_nodes(Graph, pos=positions, node_size=node_size, ax=ax, alpha=0.5, node_color=np.array(glob_colors)[:len(node_size)])
|
|
nx.draw_networkx_nodes(Graph, pos=positions, node_size=node_size, ax=ax, alpha=0.5, node_color=np.array(color_palet)[:len(node_size)])
|
|
nx.draw_networkx_labels(Graph, pos=positions2, labels=node_labels, ax=ax)
|
|
# google networkx drawing to get better graphs with networkx
|
|
# nx.draw(Graph, pos=positions, node_size=node_size, label=labels, with_labels=True, ax=ax)
|
|
# # ToDo: edges
|
|
edge_width = np.array([x / 5 for x in [*edge_labels.values()]])
|
|
if color_by_origin:
|
|
# edge_colors = np.array(glob_colors)[np.array([*edge_labels.keys()], dtype=int)[:, 0]]
|
|
edge_colors = np.array(color_palet)[np.array([*edge_labels.keys()], dtype=int)[:, 0]]
|
|
elif color_by_target:
|
|
# edge_colors = np.array(glob_colors)[np.array([*edge_labels.keys()], dtype=int)[:, 1]]
|
|
edge_colors = np.array(color_palet)[np.array([*edge_labels.keys()], dtype=int)[:, 1]]
|
|
else:
|
|
edge_colors = 'k'
|
|
|
|
|
|
edge_width[edge_width >= 6] = 6
|
|
|
|
nx.draw_networkx_edges(Graph, pos=positions, node_size=node_size, width=edge_width,
|
|
arrows=True, arrowsize=20,
|
|
min_target_margin=25, min_source_margin=25, connectionstyle="arc3, rad=0.05", # rad=0.025"
|
|
ax=ax, edge_color=edge_colors)
|
|
nx.draw_networkx_edge_labels(Graph, positions, label_pos=0.2, edge_labels=edge_labels, ax=ax, rotate=True)
|
|
|
|
ax.spines["top"].set_visible(False)
|
|
ax.spines["bottom"].set_visible(False)
|
|
ax.spines["right"].set_visible(False)
|
|
ax.spines["left"].set_visible(False)
|
|
|
|
ax.set_xlim(-1.3, 1.3)
|
|
ax.set_ylim(-1.3, 1.3)
|
|
ax.set_title(title, fontsize=12)
|
|
|
|
def plot_mixed_transition_diagram(og_matrix_origin, og_matrix_target, labels, node_size,
|
|
threshold=10, color_by_origin=False, color_by_target=False,
|
|
title='', color_palet=glob_colors):
|
|
|
|
old_mask = np.zeros_like(og_matrix_origin, dtype=bool)
|
|
for scenario in np.arange(1, 9):
|
|
fig, ax = plt.subplots(figsize=(21 / 2.54, 19 / 2.54))
|
|
fig.subplots_adjust(left=0.0, bottom=0.0, right=1, top=1)
|
|
|
|
matrix_origin = np.copy(og_matrix_origin)
|
|
matrix_target = np.copy(og_matrix_target)
|
|
|
|
matrix_origin[matrix_origin <= threshold] = 0
|
|
matrix_target[matrix_target <= threshold] = 0
|
|
helper_maks = matrix_origin >= matrix_target
|
|
|
|
# matrix_origin[~helper_maks] = 0
|
|
matrix_target[helper_maks] = 0
|
|
|
|
# embed()
|
|
# quit()
|
|
matrix_origin[(matrix_origin == 0) & (matrix_target >= 5)] = 5
|
|
|
|
matrix_origin_prev = np.copy(matrix_origin)
|
|
matrix_target_prev = np.copy(matrix_target)
|
|
|
|
mask = np.zeros_like(og_matrix_origin, dtype=bool)
|
|
if scenario == 1:
|
|
mask[-1, :] = 1
|
|
elif scenario == 2:
|
|
mask[1, :] = 1
|
|
elif scenario == 3:
|
|
mask[2, :] = 1
|
|
elif scenario == 4:
|
|
mask[0, :] = 1
|
|
mask[3, :] = 1
|
|
mask[0, 0] = 0
|
|
elif scenario == 5:
|
|
mask[4, :] = 1
|
|
elif scenario == 6:
|
|
mask = np.ones_like(matrix_origin, dtype=bool)
|
|
mask[0, 0] = 0
|
|
elif scenario == 7:
|
|
mask = np.zeros_like(matrix_origin, dtype=bool)
|
|
mask[5, 1] = 1
|
|
mask[1, 2] = 1
|
|
mask[2, 0] = 1
|
|
mask[0, 3] = 1
|
|
mask[3, 0] = 1
|
|
elif scenario == 8:
|
|
old_mask = np.ones_like(matrix_origin, dtype=bool)
|
|
old_mask[0, 0] = 0
|
|
mask = np.zeros_like(matrix_origin, dtype=bool)
|
|
mask[5, 1] = 1
|
|
mask[1, 2] = 1
|
|
mask[2, 0] = 1
|
|
mask[0, 3] = 1
|
|
mask[3, 0] = 1
|
|
mask[2, 3] = 1
|
|
mask[5, 2] = 1
|
|
old_mask[mask] = 0
|
|
matrix_origin[~mask] = 0
|
|
matrix_target[~mask] = 0
|
|
matrix_origin_prev[~old_mask] = 0
|
|
matrix_target_prev[~old_mask] = 0
|
|
|
|
matrix_origin = np.around(matrix_origin, decimals=1)
|
|
# matrix_target = np.around(matrix_target, decimals=1)
|
|
matrix_origin_prev = np.around(matrix_origin_prev, decimals=1)
|
|
# matrix_target_prev = np.around(matrix_target_prev, decimals=1)
|
|
|
|
Graph = nx.from_numpy_array(matrix_origin, create_using=nx.DiGraph)
|
|
# Graph2 = nx.from_numpy_array(matrix_target, create_using=nx.DiGraph)
|
|
Graph_prev = nx.from_numpy_array(matrix_origin_prev, create_using=nx.DiGraph)
|
|
# Graph2_prev = nx.from_numpy_array(matrix_target_prev, create_using=nx.DiGraph)
|
|
|
|
node_labels = dict(zip(Graph, labels))
|
|
|
|
# embed()
|
|
# quit()
|
|
edge_labels = nx.get_edge_attributes(Graph, 'weight')
|
|
# edge_labels2 = nx.get_edge_attributes(Graph2, 'weight')
|
|
edge_labels_prev = nx.get_edge_attributes(Graph_prev, 'weight')
|
|
# edge_labels2_prev = nx.get_edge_attributes(Graph2_prev, 'weight')
|
|
|
|
positions = nx.circular_layout(Graph)
|
|
positions2 = nx.circular_layout(Graph)
|
|
for p in positions:
|
|
positions2[p][0] *= 1.2
|
|
positions2[p][1] *= 1.2
|
|
|
|
nx.draw_networkx_nodes(Graph, pos=positions, node_size=node_size, ax=ax, alpha=0.5, node_color=np.array(color_palet)[:len(node_size)])
|
|
nx.draw_networkx_labels(Graph, pos=positions2, labels=node_labels, ax=ax)
|
|
|
|
# edge_width = np.array([(x / 5) for x in [*edge_labels.values()]])
|
|
edge_width = np.array([np.log(x) for x in [*edge_labels.values()]])
|
|
# edge_width2 = np.array([x / 5 for x in [*edge_labels2.values()]])
|
|
# edge_width_prev = np.array([(x / 5) for x in [*edge_labels_prev.values()]])
|
|
edge_width_prev = np.array([np.log(x) for x in [*edge_labels_prev.values()]])
|
|
# edge_width2_prev = np.array([x / 5 for x in [*edge_labels2_prev.values()]])
|
|
|
|
edge_width[edge_width >= 6] = 6
|
|
# edge_width2[edge_width2 >= 6] = 6
|
|
edge_width_prev[edge_width_prev >= 6] = 6
|
|
# edge_width2_prev[edge_width2_prev >= 6] = 6
|
|
|
|
if len(edge_labels) >= 1:
|
|
if color_by_origin:
|
|
edge_colors = np.array(color_palet)[np.array([*edge_labels.keys()], dtype=int)[:, 0]]
|
|
elif color_by_target:
|
|
edge_colors = np.array(color_palet)[np.array([*edge_labels.keys()], dtype=int)[:, 1]]
|
|
else:
|
|
edge_colors = 'k'
|
|
|
|
# nx.draw_networkx_edges(Graph2, pos=positions, node_size=node_size, width=edge_width2,
|
|
# arrows=True, arrowsize=20, arrowstyle='->',
|
|
# min_target_margin=25, min_source_margin=25, connectionstyle="arc3, rad=0.05",
|
|
# # rad=0.025"
|
|
# ax=ax, edge_color=edge_colors)
|
|
|
|
if len(edge_labels_prev) >= 1:
|
|
if color_by_origin:
|
|
edge_colors_prev = np.array(color_palet)[np.array([*edge_labels_prev.keys()], dtype=int)[:, 0]]
|
|
elif color_by_target:
|
|
edge_colors_prev = np.array(color_palet)[np.array([*edge_labels_prev.keys()], dtype=int)[:, 1]]
|
|
else:
|
|
edge_colors_prev = 'k'
|
|
|
|
|
|
# nx.draw_networkx_edges(Graph2_prev, pos=positions, node_size=node_size, width=edge_width2_prev,
|
|
# arrows=True, arrowsize=20, arrowstyle='->',
|
|
# min_target_margin=25, min_source_margin=25, connectionstyle="arc3, rad=0.05", # rad=0.025"
|
|
# ax=ax, edge_color=edge_colors_prev, alpha=.25)
|
|
|
|
nx.draw_networkx_edges(Graph, pos=positions, node_size=node_size, width=edge_width,
|
|
arrows=True, arrowsize=20, arrowstyle='->',
|
|
min_target_margin=25, min_source_margin=25, connectionstyle="arc3, rad=0.05",
|
|
ax=ax, edge_color=edge_colors)
|
|
if len(edge_labels_prev) > 0:
|
|
nx.draw_networkx_edges(Graph_prev, pos=positions, node_size=node_size, width=edge_width_prev,
|
|
arrows=True, arrowsize=20, arrowstyle='->',
|
|
min_target_margin=25, min_source_margin=25, connectionstyle="arc3, rad=0.05",
|
|
ax=ax, edge_color=edge_colors_prev, alpha=.25)
|
|
|
|
ax.spines["top"].set_visible(False)
|
|
ax.spines["bottom"].set_visible(False)
|
|
ax.spines["right"].set_visible(False)
|
|
ax.spines["left"].set_visible(False)
|
|
|
|
ax.set_xlim(-1.4, 1.4)
|
|
ax.set_ylim(-1.3, 1.3)
|
|
ax.set_title(title, fontsize=12)
|
|
|
|
old_mask += mask
|
|
|
|
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', f'marcov_buildup_1_{scenario}' + '.png'), dpi=300)
|
|
plt.close()
|
|
# plt.show()
|
|
|
|
|
|
def create_marcov_matrix(individual_event_times, individual_event_labels):
|
|
event_times = []
|
|
event_labels = []
|
|
for ll, t in zip(individual_event_labels, individual_event_times):
|
|
event_times.extend(t)
|
|
event_labels.extend(np.full(len(t), ll))
|
|
|
|
time_sorter = np.argsort(event_times)
|
|
event_times = np.array(event_times)[time_sorter]
|
|
event_labels = np.array(event_labels)[time_sorter]
|
|
|
|
marcov_matrix = np.zeros((len(individual_event_labels) + 1, len(individual_event_labels) + 1))
|
|
for enu_ori, label_ori in enumerate(individual_event_labels):
|
|
for enu_tar, label_tar in enumerate(individual_event_labels):
|
|
n = len(event_times[:-1][(event_labels[:-1] == label_ori) & (event_labels[1:] == label_tar) & (
|
|
np.diff(event_times) <= 5)])
|
|
marcov_matrix[enu_ori, enu_tar] = n
|
|
for enu_tar, label_tar in enumerate(individual_event_labels):
|
|
n = len(event_times[:-1][(event_labels[1:] == label_tar) & (np.diff(event_times) > 5)])
|
|
marcov_matrix[-1, enu_tar] = n
|
|
marcov_matrix[-1, 5] = 0
|
|
|
|
individual_event_labels.append('start')
|
|
|
|
### get those cases where ag_on does not point to event and no event points to corresponding ag_off ... add thise cases in marcov matrix
|
|
chase_on_idx = np.where(event_labels == individual_event_labels[4])[0]
|
|
chase_off_idx = np.where(event_labels == individual_event_labels[5])[0]
|
|
helper_mask = np.ones_like(chase_on_idx)
|
|
helper_mask[np.diff(event_times)[chase_on_idx] <= 5] = 0
|
|
helper_mask[np.diff(event_times)[chase_off_idx - 1] <= 5] = 0
|
|
|
|
marcov_matrix[4, 5] += np.sum(helper_mask)
|
|
|
|
return marcov_matrix
|
|
|
|
def fine_spec_plot(ax, example_1_path, trial_summary, example_ag_on_off):
|
|
|
|
ex1_df_idx = trial_summary[trial_summary['recording'] == os.path.split(example_1_path)[-1]].index.to_numpy()[0]
|
|
lose_id = trial_summary.iloc[ex1_df_idx]['lose_ID']
|
|
|
|
fine_spec_shape = np.load(os.path.join(example_1_path, 'fill_spec_shape.npy'))
|
|
fine_spec = np.memmap(os.path.join(example_1_path, 'fill_spec.npy'), dtype='float', mode='r', shape=(fine_spec_shape[0], fine_spec_shape[1]), order='F')
|
|
fine_times = np.load(os.path.join(example_1_path, 'fill_times.npy'))
|
|
spec_freqs = np.load(os.path.join(example_1_path, 'fill_freqs.npy'))
|
|
|
|
times = np.load(os.path.join(example_1_path, 'times.npy'))
|
|
fund_v = np.load(os.path.join(example_1_path, 'fund_v.npy'))
|
|
ident_v = np.load(os.path.join(example_1_path, 'ident_v.npy'))
|
|
idx_v = np.load(os.path.join(example_1_path, 'idx_v.npy'))
|
|
|
|
# artificial_t_axis = np.linspace(times[0], times[-1], spec.shape[1])
|
|
# artificial_f_axis = np.linspace(0, 2000, spec.shape[0])
|
|
# plt.pcolormesh(artificial_t_axis, artificial_f_axis, decibel(spec), vmin=-100, vmax=-50)
|
|
lose_freq_in_snippet = fund_v[(ident_v == lose_id) & (times[idx_v] > example_ag_on_off[0][0]-5) & (times[idx_v] < example_ag_on_off[0][1]+5)]
|
|
max_f, min_f = np.max(lose_freq_in_snippet) + 25, np.min(lose_freq_in_snippet) - 25
|
|
min_f = 750
|
|
|
|
# print(example_1_path, example_ag_on_off[0][0])
|
|
f_idx0 = np.where(spec_freqs <= min_f)[0][-1]
|
|
f_idx1 = np.where(spec_freqs >= max_f)[0][0]
|
|
|
|
t_idx0 = np.where(fine_times <= example_ag_on_off[0][0] - 5)[0][-1]
|
|
t_idx1 = np.where(fine_times >= example_ag_on_off[0][0] + 4)[0][0]
|
|
ax.pcolormesh(fine_times[t_idx0:t_idx1+1] - example_ag_on_off[0][0], spec_freqs[f_idx0:f_idx1+1],
|
|
decibel(fine_spec[f_idx0:f_idx1+1, t_idx0:t_idx1+1]), cmap='afmhot')
|
|
|
|
t_idx0 = np.where(fine_times <= example_ag_on_off[0][1] - 5)[0][-1]
|
|
t_idx1 = np.where(fine_times >= example_ag_on_off[0][1] + 5)[0][0]
|
|
ax.pcolormesh(fine_times[t_idx0:t_idx1+1] - example_ag_on_off[0][1] + 10, spec_freqs[f_idx0:f_idx1+1],
|
|
decibel(fine_spec[f_idx0:f_idx1+1, t_idx0:t_idx1+1]), cmap='afmhot')
|
|
|
|
ax.set_yticks([750, 775, 800])
|
|
|
|
ax.fill_between([4, 5], [spec_freqs[f_idx0], spec_freqs[f_idx0]], [spec_freqs[f_idx1], spec_freqs[f_idx1]], color='white')
|
|
|
|
def main(base_path):
|
|
if not os.path.exists(os.path.join(os.path.split(__file__)[0], 'figures', 'markov')):
|
|
os.makedirs(os.path.join(os.path.split(__file__)[0], 'figures', 'markov'))
|
|
|
|
trial_summary = pd.read_csv(os.path.join(base_path, 'trial_summary.csv'), index_col=0)
|
|
chirp_notes = pd.read_csv(os.path.join(base_path, 'chirp_notes.csv'), index_col=0)
|
|
# trial_summary = trial_summary[chirp_notes['good'] == 1]
|
|
trial_mask = chirp_notes['good'] == 1
|
|
|
|
all_marcov_matrix = []
|
|
all_event_counts = []
|
|
all_agonistic_categorie = []
|
|
|
|
# agonistic categorie plot
|
|
# fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
|
|
# gs = gridspec.GridSpec(2, 1, left=0.1, bottom=0.1, right=0.9, top=0.95, height_ratios=[1, 4], hspace=0)
|
|
# ax = fig.add_subplot(gs[1, 0])
|
|
# ax_spec = fig.add_subplot(gs[0, 0], sharex=ax)
|
|
# plt.setp(ax_spec.get_xticklabels(), visible=False)
|
|
#
|
|
# for i in range(1, 5):
|
|
# ax.fill_between([0, 4], np.array([-.2, -.2]) + i, np.array([.2, .2]) + i, color='tab:grey')
|
|
# ax.fill_between([5, 10], np.array([-.2, -.2]) + i, np.array([.2, .2]) + i, color='tab:grey')
|
|
#
|
|
# fill_dots = np.arange(4, 5.1, 0.125)
|
|
# ax.plot(fill_dots, np.ones_like(fill_dots)*i, '.', color='tab:grey', markersize=3)
|
|
|
|
got_examples = [False, False, False]
|
|
example_ag_on_off = [[], [], []]
|
|
example_chirp_times = [[], [], []]
|
|
example_rise_times = [[], [], []]
|
|
example_1_path = ''
|
|
example_skips = [15, 4, 3] #3, 5, 9, 15, 19
|
|
|
|
for index, trial in trial_summary.iterrows():
|
|
trial_path = os.path.join(base_path, trial['recording'])
|
|
|
|
if not trial_mask[index]:
|
|
continue
|
|
if trial['group'] < 5:
|
|
continue
|
|
if not os.path.exists(os.path.join(trial_path, 'led_idxs.csv')):
|
|
continue
|
|
if not os.path.exists(os.path.join(trial_path, 'LED_frames.npy')):
|
|
continue
|
|
if trial['draw'] == 1:
|
|
continue
|
|
|
|
ids = np.load(os.path.join(trial_path, 'analysis', 'ids.npy'))
|
|
times = np.load(os.path.join(trial_path, 'times.npy'))
|
|
sorter = -1 if trial['win_ID'] != ids[0] else 1
|
|
|
|
### event times --> BORIS behavior
|
|
contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames = \
|
|
load_and_converete_boris_events(trial_path, trial['recording'], sr=20_000)
|
|
|
|
### communication
|
|
if not os.path.exists(os.path.join(trial_path, 'chirp_times_cnn.npy')):
|
|
continue
|
|
|
|
chirp_t = np.load(os.path.join(trial_path, 'chirp_times_cnn.npy'))
|
|
chirp_ids = np.load(os.path.join(trial_path, 'chirp_ids_cnn.npy'))
|
|
chirp_times = [chirp_t[chirp_ids == trial['win_ID']], chirp_t[chirp_ids == trial['lose_ID']]]
|
|
|
|
rise_idx = np.load(os.path.join(trial_path, 'analysis', 'rise_idx.npy'))[::sorter]
|
|
rise_idx_int = [np.array(rise_idx[i][~np.isnan(rise_idx[i])], dtype=int) for i in range(len(rise_idx))]
|
|
rise_times = [times[rise_idx_int[0]], times[rise_idx_int[1]]]
|
|
|
|
# trial marcov matrix
|
|
individual_event_times = [chirp_times[1], rise_times[1], chirp_times[0], rise_times[0], ag_on_off_t_GRID[:, 0],
|
|
ag_on_off_t_GRID[:, 1], contact_t_GRID]
|
|
individual_event_labels = [r'chirp$_{lose}$', r'rise$_{lose}$', r'chirp$_{win}$', r'rise$_{win}$',
|
|
r'chace$_{on}$', r'chace$_{off}$', 'contact']
|
|
|
|
marcov_matrix = create_marcov_matrix(individual_event_times, individual_event_labels)
|
|
all_marcov_matrix.append(marcov_matrix)
|
|
|
|
# compute and store trial event counts
|
|
event_counts = np.array(list(map(lambda x: len(x), individual_event_times)))
|
|
event_counts = np.append(event_counts, marcov_matrix[-1].sum())
|
|
all_event_counts.append(event_counts)
|
|
|
|
# agonistic categories
|
|
agonitic_categorie = np.zeros(len(ag_on_off_t_GRID))
|
|
for enu, (chase_on_time, chase_off_time) in enumerate(ag_on_off_t_GRID):
|
|
chase_dur = chase_off_time - chase_on_time
|
|
chirp_dt = chase_dur if chase_dur < 5 else 5
|
|
max_dt = 5
|
|
|
|
# check if rise before chase / chirp at end
|
|
rise_before, chirp_arround_end = False, False
|
|
if np.any(((chase_on_time - rise_times[1]) > 0) & ((chase_on_time - rise_times[1]) < max_dt)):
|
|
rise_times_oi = rise_times[1][((chase_on_time - rise_times[1]) > 0) & ((chase_on_time - rise_times[1]) < max_dt)]
|
|
rise_before = True
|
|
|
|
if np.any( ((chase_off_time - chirp_times[1]) < chirp_dt) & ((chirp_times[1] - chase_off_time) < max_dt)):
|
|
|
|
chirp_time_oi = chirp_times[1][((chase_off_time - chirp_times[1]) < chase_dur) & ((chirp_times[1] - chase_off_time) < max_dt)]
|
|
chirp_arround_end = True
|
|
|
|
|
|
# define agonistic categorie based on rise/chirp occurance
|
|
if rise_before:
|
|
if chirp_arround_end:
|
|
agonitic_categorie[enu] = 1
|
|
else:
|
|
agonitic_categorie[enu] = 2
|
|
else:
|
|
if chirp_arround_end:
|
|
agonitic_categorie[enu] = 3
|
|
else:
|
|
agonitic_categorie[enu] = 4
|
|
|
|
if agonitic_categorie[enu] == 1 and not got_examples[0]:
|
|
if chase_dur > 10:
|
|
if np.any((chirp_time_oi - chase_off_time) < 0) and np.any((chirp_time_oi - chase_off_time) > 0):
|
|
if example_skips[int(agonitic_categorie[enu] - 1)] == 0:
|
|
example_ag_on_off[int(agonitic_categorie[enu] - 1)].extend([chase_on_time, chase_off_time])
|
|
example_chirp_times[int(agonitic_categorie[enu] - 1)].extend(chirp_time_oi)
|
|
example_rise_times[int(agonitic_categorie[enu] - 1)].extend(rise_times_oi)
|
|
example_1_path = trial_path
|
|
got_examples[0] = True
|
|
else:
|
|
example_skips[int(agonitic_categorie[enu] - 1)] -= 1
|
|
elif agonitic_categorie[enu] == 2 and not got_examples[1]:
|
|
if chase_dur > 10:
|
|
if example_skips[int(agonitic_categorie[enu] - 1)] == 0:
|
|
example_ag_on_off[int(agonitic_categorie[enu] - 1)].extend([chase_on_time, chase_off_time])
|
|
example_rise_times[int(agonitic_categorie[enu] - 1)].extend(rise_times_oi)
|
|
got_examples[1] = True
|
|
else:
|
|
example_skips[int(agonitic_categorie[enu] - 1)] -= 1
|
|
elif agonitic_categorie[enu] == 3 and not got_examples[2]:
|
|
if chase_dur > 10:
|
|
if np.any((chirp_time_oi - chase_off_time) < 0) and np.any((chirp_time_oi - chase_off_time) > 0):
|
|
if example_skips[int(agonitic_categorie[enu] - 1)] == 0:
|
|
example_ag_on_off[int(agonitic_categorie[enu] - 1)].extend([chase_on_time, chase_off_time])
|
|
example_chirp_times[int(agonitic_categorie[enu] - 1)].extend(chirp_time_oi)
|
|
got_examples[2] = True
|
|
else:
|
|
example_skips[int(agonitic_categorie[enu] - 1)] -= 1
|
|
else:
|
|
pass
|
|
|
|
all_agonistic_categorie.append(agonitic_categorie)
|
|
|
|
### agonistic categorie example figure
|
|
fig = plt.figure(figsize=(20 / 2.54, 12 / 2.54))
|
|
gs = gridspec.GridSpec(2, 1, left=0.1, bottom=0.1, right=0.9, top=0.9, height_ratios=[1, 3], hspace=0)
|
|
ax = fig.add_subplot(gs[1, 0])
|
|
ax_spec = fig.add_subplot(gs[0, 0], sharex=ax)
|
|
plt.setp(ax_spec.get_xticklabels(), visible=False)
|
|
|
|
for i in range(1, 5):
|
|
ax.fill_between([0, 4], np.array([-.2, -.2]) + i, np.array([.2, .2]) + i, color='tab:grey')
|
|
ax.fill_between([5, 10], np.array([-.2, -.2]) + i, np.array([.2, .2]) + i, color='tab:grey')
|
|
|
|
fill_dots = np.arange(4, 5.1, 0.125)
|
|
ax.plot(fill_dots, np.ones_like(fill_dots)*i, '.', color='tab:grey', markersize=3)
|
|
|
|
for enu, (chirp_time_oi, rise_times_oi, ag_on_off) in enumerate(zip(example_chirp_times, example_rise_times, example_ag_on_off)):
|
|
chase_on_time, chase_off_time = ag_on_off
|
|
|
|
for ct in chirp_time_oi:
|
|
ax.plot([ct - chase_off_time + 10, ct - chase_off_time + 10], [enu + .8, enu + 1.2], color='k', lw=2)
|
|
for rt in rise_times_oi:
|
|
ax.plot([rt - chase_on_time, rt - chase_on_time], [enu + .8, enu + 1.2], color='firebrick', lw=2)
|
|
|
|
stacked_agonistic_categories = np.hstack(all_agonistic_categorie)
|
|
pct_each_categorie = np.zeros(4)
|
|
for enu, cat in enumerate(range(1, 5)):
|
|
pct_each_categorie[enu] = len(stacked_agonistic_categories[stacked_agonistic_categories == cat]) / len(stacked_agonistic_categories)
|
|
ax.text(15.2, enu + 1, f'{pct_each_categorie[enu] * 100:.1f}' + ' $\%$', clip_on=False, fontsize=14, ha='left', va='center')
|
|
|
|
# plot correct spectrogram
|
|
fine_spec_plot(ax_spec, example_1_path, trial_summary, example_ag_on_off)
|
|
|
|
# for a in [ax, ax_spec]:
|
|
# a.tick_params(labelsize=10)
|
|
##########################################
|
|
|
|
ax.plot([0, 0], [0.5, 5], '--', color='k', lw=1)
|
|
ax.plot([10, 10], [0.5, 5], '--', color='k', lw=1)
|
|
ax.set_ylim(0.5, 4.5)
|
|
ax.set_xlim(-5, 15)
|
|
ax.set_yticks([1, 2, 3, 4])
|
|
# ax.set_yticklabels([r'rise$_{pre}$ $&$ chirp$_{end}$', r'only rise$_{pre}$', r'only chirp$_{end}$', 'no communication'])
|
|
ax.set_yticklabels(['A ', 'B ', 'C ', 'D '])
|
|
ax.invert_yaxis()
|
|
ax.set_xlabel('time [s]', fontsize=12)
|
|
ax.tick_params(axis='y', labelsize=20)
|
|
ax.tick_params(axis = 'x', labelsize=10)
|
|
ax_spec.tick_params(labelsize=10)
|
|
|
|
|
|
legend_elements = [Line2D([0], [0], color='firebrick', lw=2, label=r'rise$_{lose}$'),
|
|
Line2D([0], [0], color='k', lw=2, label=r'chirp$_{lose}$'),
|
|
Patch(facecolor='tab:grey', edgecolor='w', label= 'chase event')]
|
|
|
|
ax_spec.legend(handles=legend_elements, loc='lower right', ncol=3, bbox_to_anchor=(1, 1), frameon=False, fontsize=10, facecolor='white')
|
|
ax_spec.set_ylabel('EODf [Hz]', fontsize=12)
|
|
ax.spines[['right', 'top']].set_visible(False)
|
|
|
|
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', 'agonistic_catego ries' + '.png'), dpi=300)
|
|
plt.show()
|
|
|
|
|
|
### bar plot - agonistic categories counts/pct #####################################################################
|
|
|
|
fig, ax = plt.subplots(figsize=(20/2.54, 12/2.54))
|
|
ax.bar(np.arange(4),
|
|
[len(stacked_agonistic_categories[stacked_agonistic_categories == 1]),
|
|
len(stacked_agonistic_categories[stacked_agonistic_categories == 2]),
|
|
len(stacked_agonistic_categories[stacked_agonistic_categories == 3]),
|
|
len(stacked_agonistic_categories[stacked_agonistic_categories == 4])])
|
|
ax.set_xticks(np.arange(4))
|
|
ax.set_xticklabels([r'rise$_{pre}$ + chirp$_{end}$', r'rise$_{pre}$ + _', r'_ + chirp$_{end}$', '_ + _'])
|
|
plt.show()
|
|
|
|
# pct
|
|
pct_agon_categorie = np.zeros(shape=(len(all_agonistic_categorie), 4))
|
|
for enu, agonitic_categorie in enumerate(all_agonistic_categorie):
|
|
for cat in np.arange(4):
|
|
pct_agon_categorie[enu, cat] = len(agonitic_categorie[agonitic_categorie == cat+1]) / len(agonitic_categorie)
|
|
|
|
fig, ax = plt.subplots(figsize=(20 / 2.54, 12 / 2.54))
|
|
ax.bar(np.arange(4), pct_agon_categorie.mean(0))
|
|
ax.errorbar(np.arange(4), pct_agon_categorie.mean(0), yerr=pct_agon_categorie.std(0), fmt='', color='k', linestyle='None')
|
|
ax.set_xticks(np.arange(4))
|
|
ax.set_xticklabels([r'rise$_{pre}$ + chirp$_{end}$', r'rise$_{pre}$ + _', r'_ + chirp$_{end}$', '_ + _'])
|
|
plt.show()
|
|
|
|
|
|
### marcov models plots ############################################################################################
|
|
all_marcov_matrix = np.array(all_marcov_matrix)
|
|
all_event_counts = np.array(all_event_counts)
|
|
|
|
collective_marcov_matrix = np.sum(all_marcov_matrix, axis=0)
|
|
collective_event_counts = np.sum(all_event_counts, axis=0)
|
|
|
|
for del_idx in [3, 2]:
|
|
collective_marcov_matrix = np.delete(collective_marcov_matrix, del_idx, 0)
|
|
collective_marcov_matrix = np.delete(collective_marcov_matrix, del_idx, 1)
|
|
collective_event_counts = np.delete(collective_event_counts, del_idx, 0)
|
|
individual_event_labels.pop(del_idx)
|
|
|
|
|
|
# collective_event_counts = np.ones_like(collective_event_counts) * collective_event_counts.mean()
|
|
ball_size = np.ones_like(collective_event_counts) * collective_event_counts.mean()
|
|
plot_transition_matrix(collective_marcov_matrix, individual_event_labels)
|
|
|
|
# marcov by origin
|
|
fig, ax = plt.subplots(figsize=(21 / 2.54, 19 / 2.54))
|
|
fig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.95)
|
|
|
|
plot_transition_diagram(
|
|
collective_marcov_matrix / collective_event_counts.reshape(len(collective_event_counts), 1) * 100,
|
|
individual_event_labels, ball_size, ax, threshold=5, color_by_origin=True, title='origin triggers target [%]', color_palet=glob_colors_new)
|
|
# plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', 'markov_destination' + '.png'), dpi=300)
|
|
# plt.close()
|
|
|
|
# marcov by target
|
|
fig, ax = plt.subplots(figsize=(21 / 2.54, 19 / 2.54))
|
|
fig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.95)
|
|
plot_transition_diagram(collective_marcov_matrix / collective_event_counts * 100,
|
|
individual_event_labels, ball_size, ax, threshold=5, color_by_target=True,
|
|
title='target triggered by origin [%]', color_palet=glob_colors_new)
|
|
# plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', 'markov_origin' + '.png'), dpi=300)
|
|
# plt.close()
|
|
|
|
mm_origin = collective_marcov_matrix / collective_event_counts.reshape(len(collective_event_counts), 1) * 100
|
|
mm_target = collective_marcov_matrix / collective_event_counts * 100
|
|
max_collective_marcov = np.array([mm_origin, mm_target]).max(0)
|
|
|
|
fig, ax = plt.subplots(figsize=(21 / 2.54, 19 / 2.54))
|
|
fig.subplots_adjust(left=0.0, bottom=0.0, right=1, top=1)
|
|
plot_transition_diagram(max_collective_marcov,
|
|
individual_event_labels, ball_size, ax, threshold=10, color_by_origin=True,
|
|
title='best of both worlds', color_palet=glob_colors_new)
|
|
|
|
plt.show()
|
|
|
|
plot_mixed_transition_diagram(mm_origin, mm_target, individual_event_labels, ball_size,
|
|
color_by_origin=True, color_palet=glob_colors_new)
|
|
|
|
for i, (marcov_matrix, event_counts) in enumerate(zip(all_marcov_matrix, all_event_counts)):
|
|
fig, ax = plt.subplots(figsize=(21 / 2.54, 19 / 2.54))
|
|
fig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.95)
|
|
|
|
plot_transition_diagram(
|
|
marcov_matrix / event_counts.reshape(len(event_counts), 1) * 100,
|
|
individual_event_labels, event_counts, ax, threshold=5, color_by_origin=True,
|
|
title='origin triggers target [%]')
|
|
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', f'markov_{i}_destination' + '.png'),
|
|
dpi=300)
|
|
plt.close()
|
|
|
|
fig, ax = plt.subplots(figsize=(21 / 2.54, 19 / 2.54))
|
|
fig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.95)
|
|
plot_transition_diagram(marcov_matrix / event_counts * 100,
|
|
individual_event_labels, event_counts, ax, threshold=5, color_by_target=True,
|
|
title='target triggered by origin [%]')
|
|
plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'markov', f'markov_{i}_origin' + '.png'),
|
|
dpi=300)
|
|
plt.close()
|
|
####################################################################################################################
|
|
|
|
embed()
|
|
quit()
|
|
pass
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main(sys.argv[1])
|