38 lines
1.1 KiB
Python
38 lines
1.1 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
import os
|
|
import sys
|
|
from IPython import embed
|
|
|
|
def main(data_folder=None):
|
|
trials_meta = pd.read_csv('order_meta.csv')
|
|
|
|
for trial_idx in range(len(trials_meta)):
|
|
group = trials_meta['group'][trial_idx]
|
|
recording = trials_meta['recording'][trial_idx][1:-1]
|
|
|
|
if group < 3:
|
|
continue
|
|
|
|
trial_path = os.path.join(data_folder, recording)
|
|
if not os.path.exists(trial_path):
|
|
continue
|
|
|
|
if not os.path.exists(os.path.join(trial_path, 'led_idxs.csv')):
|
|
continue
|
|
|
|
print(group, recording)
|
|
|
|
LED_on_idx_DF = pd.read_csv(os.path.join(trial_path, 'led_idxs.csv'))
|
|
i0 = np.array([int(LED_on_idx_DF.keys()[0])])
|
|
LED_on_idx_DATA = np.concatenate((i0, np.array(LED_on_idx_DF).T[0]))
|
|
LED_on_time_BORIS = np.load(os.path.join(trial_path, 'LED_on_time.npy'), allow_pickle=True)
|
|
|
|
print(len(LED_on_idx_DATA), len(LED_on_time_BORIS))
|
|
|
|
embed()
|
|
quit()
|
|
pass
|
|
|
|
if __name__ == '__main__':
|
|
main("/home/raab/data/mount_data/") |