import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools
from event_time_correlations import load_and_converete_boris_events
from tqdm import tqdm
import numpy as np
import pandas as pd
import os
import sys
import glob
from IPython import embed


def load_frame_times(trial_path):
    t_filepath = glob.glob(os.path.join(trial_path, '*.dat'))
    if len(t_filepath) == 0:
        return np.array([])
    else:
        t_filepath = t_filepath[0]
    f = open(t_filepath, 'r')
    frame_t = []
    for line in f.readlines():
        t = sum(x * float(t) for x, t in zip([3600, 60, 1], line.replace('\n', '').split(":")))
        frame_t.append(t)
    return np.array(frame_t)


# def load_and_converete_boris_events(trial_path, recording, sr, video_stated_FPS=25):
#     def converte_video_frames_to_grid_idx(event_frames, led_frames, led_idx):
#         event_idx_grid = (event_frames - led_frames[0]) / (led_frames[-1] - led_frames[0]) * (led_idx[-1] - led_idx[0]) + led_idx[0]
#         return event_idx_grid
#
#     # idx in grid-recording
#     led_idx = pd.read_csv(os.path.join(trial_path, 'led_idxs.csv'), header=None).iloc[:, 0].to_numpy()
#     # frames where LED gets switched on
#     led_frames = np.load(os.path.join(trial_path, 'LED_frames.npy'))
#
#     times, behavior, t_ag_on_off, t_contact, video_FPS = load_boris(trial_path, recording)
#
#     contact_frame = np.array(np.round(t_contact * video_FPS), dtype=int)
#     ag_on_off_frame = np.array(np.round(t_ag_on_off * video_FPS), dtype=int)
#
#     # led_t_GRID = led_idx / sr
#     contact_t_GRID = converte_video_frames_to_grid_idx(contact_frame, led_frames, led_idx) / sr
#     ag_on_off_t_GRID = converte_video_frames_to_grid_idx(ag_on_off_frame, led_frames, led_idx) / sr
#
#     return contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames


# def load_boris(trial_path, recording):
#     boris_file = '-'.join(recording.split('-')[:3]) + '.csv'
#
#     data = pd.read_csv(os.path.join(trial_path, boris_file))
#     times = data['Start (s)']
#     behavior = data['Behavior']
#
#     t_ag_on = times[behavior == 0]
#     t_ag_off = times[behavior == 1]
#
#     t_ag_on_off = []
#     for t in t_ag_on:
#         t1 = np.array(t_ag_off)[t_ag_off > t]
#         if len(t1) >= 1:
#             t_ag_on_off.append(np.array([t, t1[0]]))
#
#     t_contact = times[behavior == 2]
#
#     return times, behavior, np.array(t_ag_on_off), t_contact.to_numpy(), data['FPS'][0]

def get_baseline_freq(fund_v, idx_v, times, ident_v, idents = None, binwidth = 300):
    if not hasattr(idents, '__len__'):
        idents = np.unique(ident_v[~np.isnan(ident_v)])

    base_freqs = []
    for id in idents:
        f = fund_v[ident_v == id]
        t = times[idx_v[ident_v == id]]
        bins = np.arange(-binwidth/2, times[-1] + binwidth/2, binwidth)
        base_f = np.full(len(bins)-1, np.nan)
        for i in range(len(bins)-1):
            Cf = f[(t > bins[i]) & (t <= bins[i+1])]
            if len(Cf) == 0:
                continue
            else:
                base_f[i] = np.percentile(Cf, 5)
        base_freqs.append(base_f)

    return np.array(base_freqs), np.array(bins[:-1] + (bins[1] - bins[0])/2)

def q10(f1, f2, t1, t2):
    return(f2/f1)**(10/(t2 - t1))

def frequency_q10_compensation(baseline_freqs : np.ndarray,
                               baseline_freq_times : np.ndarray,
                               temp : np.ndarray,
                               temp_t : np.ndarray,
                               light_start_sec : float):
    """
    Compute baseline frequency at 25 degree Celsius using Q10 formula. Q10 values are computed between each frequency-
    temperature pair after light_start_sec (since frequency modulations can be assumed minimal during light). Q10-
    compensated baseline freqs are computed for all values in baseline_freqs using the median q10 value computed previously.

    Parameters
    ----------
    baseline_freqs: 2D-array: For each fish and each time in baseline_freq_times a correpsonding frequency in Hz.
    baseline_freq_times: 1D-array: Time stamps corresponding to baseline_freq.
    temp: 1D-array: temperature values detected at timespamps temp_t.
    temp_t: 1D-array: corresponding time stamps
    light_start_sec: time when light is switched on and frequency modulations can be assumed to be minimal. Q10 values
    only calculated for timestamps after light_start_sec

    Returns
    -------

    """
    q10_lit = 1.56

    q10_comp_freq = []
    q10_vals = []
    for bf in baseline_freqs:
        Cbf = np.copy(bf)
        Ctemp = []
        for base_line_time in baseline_freq_times:
            Ctemp.append(temp[np.argmin(np.abs(temp_t - base_line_time))])
        Ctemp = np.array(Ctemp)

        q10s = []
        for i, j in itertools.combinations(range(len(Cbf)), r=2):
            if Cbf[i] == Cbf[j] or Ctemp[i] == Ctemp[j]:
                # q10 with same values is useless
                continue
            if baseline_freq_times[i] < light_start_sec or baseline_freq_times[j] < light_start_sec:
            #     too much frequency changes due to rises in first part of rec !!!
                continue
            # if np.abs(Ctemp[i] - Ctemp[j]) < 0.5:
            #     continue

            Cq10 = q10(Cbf[i], Cbf[j], Ctemp[i], Ctemp[j])
            q10s.append(Cq10)


        # q10_comp_freq.append(Cbf * np.median(q10s) ** ((25 - Ctemp) / 10))
        q10_comp_freq.append(Cbf * q10_lit ** ((25 - Ctemp) / 10))
        q10_vals.append(np.median(q10s))

    print(f'Q10-values: {q10_vals[0]:.2f} {q10_vals[1]:.2f}')
    return q10_comp_freq, q10_vals

def get_temperature(folder_path):
    temp_file = pd.read_csv(os.path.join(folder_path, 'temperatures.csv'), sep=';')
    temp_t = temp_file[temp_file.keys()[0]]
    temp = temp_file[temp_file.keys()[1]]

    temp_t = np.array(temp_t)
    temp = np.array(temp)

    if type(temp[-1]).__name__== 'str':
        temp = np.array(temp[:-1], dtype=float)
        temp_t = np.array(temp_t[:-1], dtype=int)

    return np.array(temp_t), np.array(temp)

def main(base_path=None):
    colors = ['#BA2D22', '#53379B', '#F47F17', '#3673A4', '#AAB71B', '#DC143C', '#1E90FF']
    female_color, male_color = '#e74c3c', '#3498db'
    Wc, Lc = 'darkgreen', '#3673A4'

    if not os.path.exists(os.path.join(os.path.split(__file__)[0], 'figures', 'example_trials')):
        os.makedirs(os.path.join(os.path.split(__file__)[0], 'figures', 'example_trials'))

    # trials_meta = pd.read_csv('order_meta.csv')
    trials_meta = pd.read_csv(os.path.join(base_path, 'order_meta.csv'))
    # fish_meta = pd.read_csv('id_meta.csv')
    fish_meta = pd.read_csv(os.path.join(base_path, 'id_meta.csv'))
    fish_meta['mean_w'] = np.nanmean(fish_meta.loc[:, ['w1', 'w2', 'w3']], axis=1)
    fish_meta['mean_l'] = np.nanmean(fish_meta.loc[:, ['l1', 'l2', 'l3']], axis=1)

    video_stated_FPS = 25  # cap.get(cv2.CAP_PROP_FPS)
    sr = 20_000
    light_start_sec = 3*60*60

    trial_summary = pd.DataFrame(columns=['recording', 'group', 'win_fish', 'lose_fish', 'win_ID', 'lose_ID',
                                          'sex_win', 'sex_lose', 'size_win', 'size_lose', 'dsize', 'EODf_win', 'EODf_lose', 'dEODf',
                                          'exp_win', 'exp_lose', 'chirps_win', 'chirps_lose', 'rises_win', 'rises_lose',
                                          'chase_count', 'contact_count', 'med_chase_dur', 'comp_dur0', 'comp_dur1',
                                          'draw'])
    trial_summary_row = {f'{s}':None for s in trial_summary.keys()}

    for trial_idx in tqdm(np.arange(len(trials_meta)), desc='Trials'):
        video_eval = True

        group = trials_meta['group'][trial_idx]
        recording = trials_meta['recording'][trial_idx][1:-1]

        print('')
        print(recording)
        rec_id1 = trials_meta['rec_id1'][trial_idx]
        rec_id2 = trials_meta['rec_id2'][trial_idx]

        if group < 3:
            continue

        trial_path = os.path.join(base_path, recording)
        if not os.path.exists(trial_path):
            continue

        if group < 5:
            video_eval = False

        if not os.path.exists(os.path.join(trial_path, 'led_idxs.csv')):
            video_eval = False

        if not os.path.exists(os.path.join(trial_path, 'LED_frames.npy')):
            video_eval = False

        #############################################################################################################
        ### meta collect
        if (winner_fish := trials_meta['winner'][trial_idx]) == -1:
            pass
        elif np.isnan(winner_fish):
            continue
        elif winner_fish != trials_meta['fish1'][trial_idx] and winner_fish != trials_meta['fish2'][trial_idx]:
            embed()
            quit()
            print(f'not participating winner in {recording}!!!')
            continue

        win_id = rec_id1 if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else rec_id2
        lose_id = rec_id2 if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else rec_id1

        f1_length = float(fish_meta['mean_l'][(fish_meta['group'] == trials_meta['group'][trial_idx]) &
                                              (fish_meta['fish'] == trials_meta['fish1'][trial_idx])])
        f2_length = float(fish_meta['mean_l'][(fish_meta['group'] == trials_meta['group'][trial_idx]) &
                                              (fish_meta['fish'] == trials_meta['fish2'][trial_idx])])

        win_l = f1_length if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else f2_length
        lose_l = f2_length if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else f1_length

        win_exp = trials_meta['exp1'][trial_idx] if trials_meta['winner'][trial_idx] == trials_meta['fish1'][trial_idx] else trials_meta['exp2'][trial_idx]
        lose_exp = trials_meta['exp2'][trial_idx] if trials_meta['winner'][trial_idx] == trials_meta['fish1'][trial_idx] else trials_meta['exp1'][trial_idx]
        #############################################################################################################

        fund_v = np.load(os.path.join(trial_path, 'fund_v.npy'))
        ident_v = np.load(os.path.join(trial_path, 'ident_v.npy'))
        idx_v = np.load(os.path.join(trial_path, 'idx_v.npy'))
        times = np.load(os.path.join(trial_path, 'times.npy'))

        if len(uid:=np.unique(ident_v[~np.isnan(ident_v)])) >2:
            print(f'to many ids: {len(uid)}')
        print(f'ids in recording: {uid[0]:.0f} {uid[1]:.0f}')
        print(f'ids in meta: {rec_id1:.0f} {rec_id2:.0f}')

        meta_id_in_uid = list(map(lambda x: x in uid, [rec_id1, rec_id2]))
        if ~np.all(meta_id_in_uid):
            continue

        ids = np.load(os.path.join(trial_path, 'analysis', 'ids.npy'))
        sorter = -1 if win_id != ids[0] else 1

        temp_t, temp = get_temperature(trial_path)
        baseline_freqs = np.load(os.path.join(trial_path, 'analysis', 'baseline_freqs.npy'))[::sorter]
        baseline_freq_times = np.load(os.path.join(trial_path, 'analysis', 'baseline_freq_times.npy'))
        q10_comp_freq, q10_vals = frequency_q10_compensation(baseline_freqs, baseline_freq_times, temp, temp_t, light_start_sec=light_start_sec)

        #############################################################################################################
        ### communication
        got_chirps = False
        if os.path.exists(os.path.join(trial_path, 'chirp_times_cnn.npy')):
            chirp_t = np.load(os.path.join(trial_path, 'chirp_times_cnn.npy'))
            chirp_ids = np.load(os.path.join(trial_path, 'chirp_ids_cnn.npy'))
            chirp_times = [chirp_t[chirp_ids == win_id], chirp_t[chirp_ids == lose_id]]
            got_chirps = True

        rise_idx = np.load(os.path.join(trial_path, 'analysis', 'rise_idx.npy'))[::sorter]
        rise_idx_int = [np.array(rise_idx[i][~np.isnan(rise_idx[i])], dtype=int) for i in range(len(rise_idx))]



        #############################################################################################################
        ### physical behavior
        med_chase_dur = contact_n = chase_n = comp_dur0 = comp_dur1 = -1

        if video_eval:
            contact_t_GRID, ag_on_off_t_GRID, led_idx, led_frames = load_and_converete_boris_events(trial_path, recording, sr)

            only_contact_mask = np.ones_like(contact_t_GRID, dtype=bool)
            for enu, ct in enumerate(contact_t_GRID):
                for Cag_on_off_t in ag_on_off_t_GRID:
                    if Cag_on_off_t[0] <= ct <= Cag_on_off_t[1]:
                        only_contact_mask[enu] = 0
                        break
                    elif ct < Cag_on_off_t[0]:
                        break

            contact_t_solely = contact_t_GRID[only_contact_mask]
            ag_offs = np.concatenate((contact_t_GRID, ag_on_off_t_GRID[:, 1]))
            ag_offs = ag_offs[np.argsort(ag_offs)]

            med_chase_dur = np.median(ag_on_off_t_GRID[:,1] -  ag_on_off_t_GRID[:,0])
            contact_n = len(contact_t_GRID)
            chase_n = len(ag_on_off_t_GRID)
            comp_dur0 = ag_offs[2]
            comp_dur1 = ag_offs[2] - ag_offs[0]

        win_fish_no = trials_meta['fish1'][trial_idx] if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else trials_meta['fish2'][trial_idx]
        lose_fish_no = trials_meta['fish2'][trial_idx] if trials_meta['fish1'][trial_idx] == trials_meta['winner'][trial_idx] else trials_meta['fish1'][trial_idx]

        trial_summary.loc[len(trial_summary)] = trial_summary_row
        trial_summary.iloc[-1] = {'recording': recording,
                                  'group': trials_meta['group'][trial_idx],
                                  'win_fish': win_fish_no,
                                  'lose_fish': lose_fish_no,
                                  'win_ID': win_id,
                                  'lose_ID': lose_id,
                                  'sex_win': 'n',
                                  'sex_lose': 'n',
                                  'size_win': win_l,
                                  'size_lose': lose_l,
                                  'dsize': win_l - lose_l,
                                  'EODf_win': np.nanmedian(q10_comp_freq[0]),
                                  'EODf_lose': np.nanmedian(q10_comp_freq[1]),
                                  'dEODf': np.nanmedian(q10_comp_freq[0]) - np.nanmedian(q10_comp_freq[1]),
                                  'exp_win': win_exp,
                                  'exp_lose': lose_exp,
                                  'chirps_win': len(chirp_times[0]),
                                  'chirps_lose': len(chirp_times[1]),
                                  'rises_win': len(rise_idx_int[0]),
                                  'rises_lose': len(rise_idx_int[1]),
                                  'draw': 1 if trials_meta['winner'][trial_idx] == -1 else 0,
                                  'chase_count': chase_n,
                                  'contact_count': contact_n,
                                  'med_chase_dur': med_chase_dur,
                                  'comp_dur0': comp_dur0,
                                  'comp_dur1': comp_dur1
                                  }
        # embed()

        ###############################################################################
        fig = plt.figure(figsize=(30/2.54, 18/2.54))
        gs = gridspec.GridSpec(2, 1, left = 0.1, bottom = 0.1, right=0.95, top=0.95, height_ratios=[1, 3], hspace=0)
        ax = []
        ax.append(fig.add_subplot(gs[0, 0]))
        ax.append(fig.add_subplot(gs[1, 0], sharex=ax[0]))

        ####################################################
        ### traces

        ax[1].plot(times[idx_v[ident_v == win_id]] / 3600, fund_v[ident_v == win_id], color=Wc, label=f'ID {win_id} {np.nanmedian(q10_comp_freq[0]):.2f}Hz')
        ax[1].plot(times[idx_v[ident_v == lose_id]] / 3600, fund_v[ident_v == lose_id], color=Lc, label=f'ID {lose_id} {np.nanmedian(q10_comp_freq[1]):.2f}Hz')

        # ax[1].plot(baseline_freq_times / 3600, q10_comp_freq[0], '--', color=Wc, lw=1)
        # ax[1].plot(baseline_freq_times / 3600, q10_comp_freq[1], '--', color=Lc, lw=1)
        # ax[1].plot(times[idx_v[ident_v == lose_id]] / 3600, fund_v[ident_v == lose_id], color=Lc)

        min_f, max_f = np.min(fund_v[~np.isnan(ident_v)]), np.nanmax(fund_v[~np.isnan(ident_v)])
        ax[1].set_ylim(min_f-50, max_f+50)

        ax[1].set_xlim(times[0]/3600, times[-1]/3600)
        plt.setp(ax[0].get_xticklabels(), visible=False)

        ax_m = ax[1].twinx()
        ax_m.plot(temp_t/3600, temp, '--', lw=2, color='tab:red')
        ylim0, ylim1 = ax[1].get_ylim()

        ax_m.set_ylim(np.nanmedian(temp) - (ylim1-ylim0) / 40 / 2, np.nanmedian(temp) + (ylim1-ylim0) / 40 / 2)

        ax[1].legend(loc='upper right', bbox_to_anchor=(1, 1), title=r'EODf$_{25}$')
        ####################################################
        ### behavior
        if video_eval:
            ax[0].plot(contact_t_GRID / 3600, np.ones_like(contact_t_GRID) , '|', markersize=10, color='k')
            ax[0].plot(ag_on_off_t_GRID[:, 0] / 3600, np.ones_like(ag_on_off_t_GRID[:, 0]) * 2, '|', markersize=10, color='firebrick')

        ax[0].plot(times[rise_idx_int[0]] / 3600, np.ones_like(rise_idx_int[0]) * 4, '|', markersize=10, color=Wc)
        ax[0].plot(times[rise_idx_int[1]] / 3600, np.ones_like(rise_idx_int[1]) * 5, '|', markersize=10, color=Lc)

        if got_chirps:
            ax[0].plot(chirp_times[0] / 3600, np.ones_like(chirp_times[0]) * 7, '|', markersize=10, color=Wc)
            ax[0].plot(chirp_times[1] / 3600, np.ones_like(chirp_times[1]) * 8, '|', markersize=10, color=Lc)

        ax[0].set_ylim(0, 9)
        ax[0].set_yticks([1, 2, 4, 5, 7, 8])
        ax[0].set_yticklabels(['contact', 'chase', r'rise$_{win}$', r'rise$_{lose}$', r'chirp$_{win}$', r'chirp$_{lose}$'])

        fig.suptitle(f'{recording}')

        plt.savefig(os.path.join(os.path.split(__file__)[0], 'figures', 'example_trials', f'{recording}.png'), dpi=300)
        # plt.savefig(os.path.join(os.path.join(os.path.split(__file__)[0], 'figures', f'{recording}.png')), dpi=300)
        plt.close()



    for g in pd.unique(trial_summary['group']):
        fish_no = np.unique(np.concatenate((trial_summary['win_fish'][trial_summary['group'] == g],
                                            trial_summary['lose_fish'][trial_summary['group'] == g])))
        for f in fish_no:
            fish_EODf25 = np.concatenate((trial_summary['EODf_lose'][(trial_summary['group'] == g) & (trial_summary['lose_fish'] == f)],
                                          trial_summary['EODf_win'][(trial_summary['group'] == g) & (trial_summary['win_fish'] == f)]))
            if np.nanmedian(fish_EODf25) < 730:
                sex = 'f'
            else:
                sex = 'm'
            trial_summary['sex_win'][(trial_summary['group'] == g) & (trial_summary['win_fish'] == f)] = sex
            trial_summary['sex_lose'][(trial_summary['group'] == g) & (trial_summary['lose_fish'] == f)] = sex
    trial_summary.to_csv(os.path.join(base_path, 'trial_summary.csv'))
    pass

if __name__ == '__main__':
    # main("/home/raab/data/mount_data/")
    main("/home/raab/data/2020_competition_mount")